
3. Determinants and Diagonalization

With each square matrix we can calculate a number, called the determinant of the matrix, which tells us
whether or not the matrix is invertible. In fact, determinants can be used to give a formula for the inverse
of a matrix. They also arise in calculating certain numbers (called eigenvalues) associated with the matrix.
These eigenvalues are essential to a technique called diagonalization that is used in many applications
where it is desired to predict the future behaviour of a system. For example, we use it to predict whether a
species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term “determinant” was first used in
1801 by Gauss is his Disquisitiones Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in the eighteenth and nineteenth centuries,
primarily because of their significance in geometry (see Section 4.4). Although they are somewhat less
important today, determinants still play a role in the theory and application of matrix algebra.

3.1 The Cofactor Expansion

In Section 2.4 we defined the determinant of a 2×2 matrix A =

[
a b

c d

]
as follows:1

det A =

∣∣∣∣
a b

c d

∣∣∣∣= ad−bc

and showed (in Example 2.4.4) that A has an inverse if and only if det A 6= 0. One objective of this chapter
is to do this for any square matrix A. There is no difficulty for 1× 1 matrices: If A = [a], we define
det A = det [a] = a and note that A is invertible if and only if a 6= 0.

If A is 3×3 and invertible, we look for a suitable definition of det A by trying to carry A to the identity
matrix by row operations. The first column is not zero (A is invertible); suppose the (1, 1)-entry a is not
zero. Then row operations give

A =




a b c

d e f

g h i


→




a b c

ad ae a f

ag ah ai


→




a b c

0 ae−bd a f − cd

0 ah−bg ai− cg


=




a b c

0 u a f − cd

0 v ai− cg




where u = ae−bd and v = ah−bg. Since A is invertible, one of u and v is nonzero (by Example 2.4.11);
suppose that u 6= 0. Then the reduction proceeds

A→




a b c

0 u a f − cd

0 v ai− cg


→




a b c

0 u a f − cd

0 uv u(ai− cg)


→




a b c

0 u a f − cd

0 0 w




1Determinants are commonly written |A|= det A using vertical bars. We will use both notations.
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146 Determinants and Diagonalization

where w = u(ai− cg)− v(a f − cd) = a(aei+b f g+ cdh− ceg−a f h−bdi). We define

det A = aei+b f g+ cdh− ceg−a f h−bdi (3.1)

and observe that det A 6= 0 because a det A = w 6= 0 (is invertible).

To motivate the definition below, collect the terms in Equation 3.1 involving the entries a, b, and c in
row 1 of A:

det A =

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
= aei+b f g+ cdh− ceg−a f h−bdi

= a(ei− f h)−b(di− f g)+ c(dh− eg)

= a

∣∣∣∣
e f

h i

∣∣∣∣−b

∣∣∣∣
d f

g i

∣∣∣∣+ c

∣∣∣∣
d e

g h

∣∣∣∣

This last expression can be described as follows: To compute the determinant of a 3×3 matrix A, multiply
each entry in row 1 by a sign times the determinant of the 2×2 matrix obtained by deleting the row and
column of that entry, and add the results. The signs alternate down row 1, starting with +. It is this
observation that we generalize below.

Example 3.1.1

det




2 3 7
−4 0 6

1 5 0


= 2

∣∣∣∣
0 6
5 0

∣∣∣∣−3

∣∣∣∣
−4 6

1 0

∣∣∣∣+7

∣∣∣∣
−4 0

1 5

∣∣∣∣

= 2(−30)−3(−6)+7(−20)

=−182

This suggests an inductive method of defining the determinant of any square matrix in terms of de-
terminants of matrices one size smaller. The idea is to define determinants of 3×3 matrices in terms of
determinants of 2×2 matrices, then we do 4×4 matrices in terms of 3×3 matrices, and so on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a Matrix

Assume that determinants of (n−1)× (n−1) matrices have been defined. Given the n×n matrix
A, let

Ai j denote the (n−1)× (n−1) matrix obtained from A by deleting row i and column j.

Then the (i, j)-cofactor ci j(A) is the scalar defined by

ci j(A) = (−1)i+ j det (Ai j)

Here (−1)i+ j is called the sign of the (i, j)-position.
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The sign of a position is clearly 1 or −1, and the following diagram is useful for remembering it:



+ − + − ·· ·
− + − + · · ·
+ − + − ·· ·
− + − + · · ·
...

...
...

...




Note that the signs alternate along each row and column with + in the upper left corner.

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

A =




3 −1 6
5 2 7
8 9 4




Solution. Here A12 is the matrix

[
5 7
8 4

]
that remains when row 1 and column 2 are deleted. The

sign of position (1, 2) is (−1)1+2 =−1 (this is also the (1, 2)-entry in the sign diagram), so the
(1, 2)-cofactor is

c12(A) = (−1)1+2
∣∣∣∣

5 7
8 4

∣∣∣∣= (−1)(5 ·4−7 ·8) = (−1)(−36) = 36

Turning to position (3, 1), we find

c31(A) = (−1)3+1A31 = (−1)3+1

∣∣∣∣
−1 6

2 7

∣∣∣∣= (+1)(−7−12) =−19

Finally, the (2, 3)-cofactor is

c23(A) = (−1)2+3A23 = (−1)2+3

∣∣∣∣
3 −1
8 9

∣∣∣∣= (−1)(27+8) =−35

Clearly other cofactors can be found—there are nine in all, one for each position in the matrix.

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix

Assume that determinants of (n−1)× (n−1) matrices have been defined. If A =
[
ai j

]
is n×n

define
det A = a11c11(A)+a12c12(A)+ · · ·+a1nc1n(A)

This is called the cofactor expansion of det A along row 1.
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It asserts that det A can be computed by multiplying the entries of row 1 by the corresponding cofac-
tors, and adding the results. The astonishing thing is that det A can be computed by taking the cofactor
expansion along any row or column: Simply multiply each entry of that row or column by the correspond-
ing cofactor and add.

Theorem 3.1.1: Cofactor Expansion Theorem2

The determinant of an n×n matrix A can be computed by using the cofactor expansion along any
row or column of A. That is det A can be computed by multiplying each entry of the row or
column by the corresponding cofactor and adding the results.

The proof will be given in Section 3.6.

Example 3.1.3

Compute the determinant of A =




3 4 5
1 7 2
9 8 −6


.

Solution. The cofactor expansion along the first row is as follows:

det A = 3c11(A)+4c12(A)+5c13(A)

= 3

∣∣∣∣
7 2
8 −6

∣∣∣∣−4

∣∣∣∣
1 2
9 −6

∣∣∣∣+3

∣∣∣∣
1 7
9 8

∣∣∣∣
= 3(−58)−4(−24)+5(−55)

=−353

Note that the signs alternate along the row (indeed along any row or column). Now we compute
det A by expanding along the first column.

det A = 3c11(A)+1c21(A)+9c31(A)

= 3

∣∣∣∣
7 2
8 −6

∣∣∣∣−
∣∣∣∣

4 5
8 −6

∣∣∣∣+9

∣∣∣∣
4 5
7 2

∣∣∣∣
= 3(−58)− (−64)+9(−27)

=−353

The reader is invited to verify that det A can be computed by expanding along any other row or
column.

The fact that the cofactor expansion along any row or column of a matrix A always gives the same
result (the determinant of A) is remarkable, to say the least. The choice of a particular row or column can
simplify the calculation.

2The cofactor expansion is due to Pierre Simon de Laplace (1749–1827), who discovered it in 1772 as part of a study of
linear differential equations. Laplace is primarily remembered for his work in astronomy and applied mathematics.



3.1. The Cofactor Expansion 149

Example 3.1.4

Compute det A where A =




3 0 0 0
5 1 2 0
2 6 0 −1
−6 3 1 0


.

Solution. The first choice we must make is which row or column to use in the cofactor expansion.
The expansion involves multiplying entries by cofactors, so the work is minimized when the row
or column contains as many zero entries as possible. Row 1 is a best choice in this matrix (column
4 would do as well), and the expansion is

det A = 3c11(A)+0c12(A)+0c13(A)+0c14(A)

= 3

∣∣∣∣∣∣

1 2 0
6 0 −1
3 1 0

∣∣∣∣∣∣

This is the first stage of the calculation, and we have succeeded in expressing the determinant of
the 4×4 matrix A in terms of the determinant of a 3×3 matrix. The next stage involves this 3×3
matrix. Again, we can use any row or column for the cofactor expansion. The third column is
preferred (with two zeros), so

det A = 3

(
0

∣∣∣∣
6 0
3 1

∣∣∣∣− (−1)

∣∣∣∣
1 2
3 1

∣∣∣∣+0

∣∣∣∣
1 2
6 0

∣∣∣∣
)

= 3[0+1(−5)+0]

=−15

This completes the calculation.

Computing the determinant of a matrix A can be tedious. For example, if A is a 4× 4 matrix, the
cofactor expansion along any row or column involves calculating four cofactors, each of which involves
the determinant of a 3× 3 matrix. And if A is 5× 5, the expansion involves five determinants of 4× 4
matrices! There is a clear need for some techniques to cut down the work.3

The motivation for the method is the observation (see Example 3.1.4) that calculating a determinant
is simplified a great deal when a row or column consists mostly of zeros. (In fact, when a row or column
consists entirely of zeros, the determinant is zero—simply expand along that row or column.)

Recall next that one method of creating zeros in a matrix is to apply elementary row operations to it.
Hence, a natural question to ask is what effect such a row operation has on the determinant of the matrix.
It turns out that the effect is easy to determine and that elementary column operations can be used in the
same way. These observations lead to a technique for evaluating determinants that greatly reduces the

3If A =




a b c

d e f

g h i


 we can calculate det A by considering




a b c a b

d e f d e

g h i g h


 obtained from A by adjoining columns

1 and 2 on the right. Then det A = aei+ b f g+ cdh− ceg− a f h− bdi, where the positive terms aei, b f g, and cdh are the
products down and to the right starting at a, b, and c, and the negative terms ceg, a f h, and bdi are the products down and to the
left starting at c, a, and b. Warning: This rule does not apply to n× n matrices where n > 3 or n = 2.
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labour involved. The necessary information is given in Theorem 3.1.2.

Theorem 3.1.2

Let A denote an n×n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of the resulting
matrix is − det A.

3. If a row (or column) of A is multiplied by a constant u, the determinant of the resulting
matrix is u(det A).

4. If two distinct rows (or columns) of A are identical, det A = 0.

5. If a multiple of one row of A is added to a different row (or if a multiple of a column is added
to a different column), the determinant of the resulting matrix is det A.

Proof. We prove properties 2, 4, and 5 and leave the rest as exercises.

Property 2. If A is n×n, this follows by induction on n. If n = 2, the verification is left to the reader.
If n > 2 and two rows are interchanged, let B denote the resulting matrix. Expand det A and det B along a
row other than the two that were interchanged. The entries in this row are the same for both A and B, but
the cofactors in B are the negatives of those in A (by induction) because the corresponding (n−1)×(n−1)
matrices have two rows interchanged. Hence, det B = − det A, as required. A similar argument works if
two columns are interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by interchanging them. Then
B = A, so det B = detA. But det B = − det A by property 2, so det A = det B = 0. Again, the same
argument works for columns.

Property 5. Let B be obtained from A =
[
ai j

]
by adding u times row p to row q. Then row q of B is

(aq1 +uap1, aq2 +uap2, . . . , aqn +uapn)

The cofactors of these elements in B are the same as in A (they do not involve row q): in symbols,
cq j(B) = cq j(A) for each j. Hence, expanding B along row q gives

det A = (aq1 +uap1)cq1(A)+(aq2 +uap2)cq2(A)+ · · ·+(aqn +uapn)cqn(A)

= [aq1cq1(A)+aq2cq2(A)+ · · ·+aqncqn(A)]+u[ap1cq1(A)+ap2cq2(A)+ · · ·+apncqn(A)]

= det A+u det C

where C is the matrix obtained from A by replacing row q by row p (and both expansions are along row
q). Because rows p and q of C are equal, det C = 0 by property 4. Hence, det B = detA, as required. As
before, a similar proof holds for columns.

To illustrate Theorem 3.1.2, consider the following determinants.
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∣∣∣∣∣∣

3 −1 2
2 5 1
0 0 0

∣∣∣∣∣∣
= 0 (because the last row consists of zeros)

∣∣∣∣∣∣

3 −1 5
2 8 7
1 2 −1

∣∣∣∣∣∣
=−

∣∣∣∣∣∣

5 −1 3
7 8 2
−1 2 1

∣∣∣∣∣∣
(because two columns are interchanged)

∣∣∣∣∣∣

8 1 2
3 0 9
1 2 −1

∣∣∣∣∣∣
= 3

∣∣∣∣∣∣

8 1 2
1 0 3
1 2 −1

∣∣∣∣∣∣
(because the second row of the matrix on the left is 3 times
the second row of the matrix on the right)

∣∣∣∣∣∣

2 1 2
4 0 4
1 3 1

∣∣∣∣∣∣
= 0 (because two columns are identical)

∣∣∣∣∣∣

2 5 2
−1 2 9

3 1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 9 20
−1 2 9

3 1 1

∣∣∣∣∣∣
(because twice the second row of the matrix on the left was
added to the first row)

The following four examples illustrate how Theorem 3.1.2 is used to evaluate determinants.

Example 3.1.5

Evaluate det A when A =




1 −1 3
1 0 −1
2 1 6


.

Solution. The matrix does have zero entries, so expansion along (say) the second row would
involve somewhat less work. However, a column operation can be used to get a zero in position
(2, 3)—namely, add column 1 to column 3. Because this does not change the value of the
determinant, we obtain

det A =

∣∣∣∣∣∣

1 −1 3
1 0 −1
2 1 6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 −1 4
1 0 0
2 1 8

∣∣∣∣∣∣
=−

∣∣∣∣
−1 4

1 8

∣∣∣∣= 12

where we expanded the second 3×3 matrix along row 2.

Example 3.1.6

If det




a b c

p q r

x y z


= 6, evaluate det A where A =




a+ x b+ y c+ z

3x 3y 3z

−p −q −r


.
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Solution. First take common factors out of rows 2 and 3.

det A = 3(−1) det




a+ x b+ y c+ z

x y z

p q r




Now subtract the second row from the first and interchange the last two rows.

det A =−3 det




a b c

x y z

p q r


= 3 det




a b c

p q r

x y z


= 3 ·6 = 18

The determinant of a matrix is a sum of products of its entries. In particular, if these entries are
polynomials in x, then the determinant itself is a polynomial in x. It is often of interest to determine which
values of x make the determinant zero, so it is very useful if the determinant is given in factored form.
Theorem 3.1.2 can help.

Example 3.1.7

Find the values of x for which det A = 0, where A =




1 x x

x 1 x

x x 1


.

Solution. To evaluate det A, first subtract x times row 1 from rows 2 and 3.

det A =

∣∣∣∣∣∣

1 x x

x 1 x

x x 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 x x

0 1− x2 x− x2

0 x− x2 1− x2

∣∣∣∣∣∣
=

∣∣∣∣
1− x2 x− x2

x− x2 1− x2

∣∣∣∣

At this stage we could simply evaluate the determinant (the result is 2x3−3x2 +1). But then we
would have to factor this polynomial to find the values of x that make it zero. However, this
factorization can be obtained directly by first factoring each entry in the determinant and taking a
common factor of (1− x) from each row.

det A =

∣∣∣∣
(1− x)(1+ x) x(1− x)

x(1− x) (1− x)(1+ x)

∣∣∣∣= (1− x)2
∣∣∣∣

1+ x x

x 1+ x

∣∣∣∣
= (1− x)2(2x+1)

Hence, det A = 0 means (1− x)2(2x+1) = 0, that is x = 1 or x =−1
2 .
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Example 3.1.8

If a1, a2, and a3 are given show that

det




1 a1 a2
1

1 a2 a2
2

1 a3 a2
3


= (a3−a1)(a3−a2)(a2−a1)

Solution. Begin by subtracting row 1 from rows 2 and 3, and then expand along column 1:

det




1 a1 a2
1

1 a2 a2
2

1 a3 a2
3


= det




1 a1 a2
1

0 a2−a1 a2
2−a2

1
0 a3−a1 a2

3−a2
1


=

[
a2−a1 a2

2−a2
1

a3−a1 a2
3−a2

1

]

Now (a2−a1) and (a3−a1) are common factors in rows 1 and 2, respectively, so

det




1 a1 a2
1

1 a2 a2
2

1 a3 a2
3


= (a2−a1)(a3−a1) det

[
1 a2 +a1

1 a3 +a1

]

= (a2−a1)(a3−a1)(a3−a2)

The matrix in Example 3.1.8 is called a Vandermonde matrix, and the formula for its determinant can be
generalized to the n×n case (see Theorem 3.2.7).

If A is an n× n matrix, forming uA means multiplying every row of A by u. Applying property 3 of
Theorem 3.1.2, we can take the common factor u out of each row and so obtain the following useful result.

Theorem 3.1.3

If A is an n×n matrix, then det (uA) = un det A for any number u.

The next example displays a type of matrix whose determinant is easy to compute.

Example 3.1.9

Evaluate det A if A =




a 0 0 0
u b 0 0
v w c 0
x y z d


.

Solution. Expand along row 1 to get det A = a

∣∣∣∣∣∣

b 0 0
w c 0
y z d

∣∣∣∣∣∣
. Now expand this along the top row to

get det A = ab

∣∣∣∣
c 0
z d

∣∣∣∣= abcd, the product of the main diagonal entries.
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A square matrix is called a lower triangular matrix if all entries above the main diagonal are zero
(as in Example 3.1.9). Similarly, an upper triangular matrix is one for which all entries below the main
diagonal are zero. A triangular matrix is one that is either upper or lower triangular. Theorem 3.1.4
gives an easy rule for calculating the determinant of any triangular matrix. The proof is like the solution
to Example 3.1.9.

Theorem 3.1.4

If A is a square triangular matrix, then det A is the product of the entries on the main diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a routine matter to carry a matrix to trian-
gular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and the theorem gives an
easy method for computing their determinants. This dovetails with Example 2.4.11.

Theorem 3.1.5

Consider matrices

[
A X

0 B

]
and

[
A 0
Y B

]
in block form, where A and B are square matrices.

Then

det

[
A X

0 B

]
= det A det B and det

[
A 0
Y B

]
= det A det B

Proof. Write T = det

[
A X

0 B

]
and proceed by induction on k where A is k×k. If k = 1, it is the cofactor

expansion along column 1. In general let Si(T ) denote the matrix obtained from T by deleting row i and
column 1. Then the cofactor expansion of det T along the first column is

det T = a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T )) (3.2)

where a11, a21, · · · , ak1 are the entries in the first column of A. But Si(T ) =

[
Si(A) Xi

0 B

]
for each

i = 1, 2, · · · , k, so det (Si(T )) = det (Si(A)) · det B by induction. Hence, Equation 3.2 becomes

det T = {a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T ))} det B

= {det A} det B

as required. The lower triangular case is similar.

Example 3.1.10

det




2 3 1 3
1 −2 −1 1
0 1 0 1
0 4 0 1


=−

∣∣∣∣∣∣∣∣

2 1 3 3
1 −1 −2 1
0 0 1 1
0 0 4 1

∣∣∣∣∣∣∣∣
=−

∣∣∣∣
2 1
1 −1

∣∣∣∣
∣∣∣∣

1 1
4 1

∣∣∣∣=−(−3)(−3) =−9
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The next result shows that det A is a linear transformation when regarded as a function of a fixed
column of A. The proof is Exercise 3.1.21.

Theorem 3.1.6

Given columns c1, · · · , c j−1, c j+1, · · · , cn in Rn, define T : Rn→ R by

T (x) = det
[

c1 · · · c j−1 x c j+1 · · · cn

]
for all x in Rn

Then, for all x and y in Rn and all a in R,

T (x+y) = T (x)+T (y) and T (ax) = aT (x)

Exercises for 3.1

Exercise 3.1.1 Compute the determinants of the follow-
ing matrices.

[
2 −1
3 2

]
a.

[
6 9
8 12

]
b.

[
a2 ab

ab b2

]
c.

[
a+1 a

a a−1

]
d.

[
cosθ −sinθ

sinθ cos θ

]
e.




2 0 −3
1 2 5
0 3 0


f.




1 2 3
4 5 6
7 8 9


g.




0 a 0
b c d

0 e 0


h.




1 b c

b c 1
c 1 b


i.




0 a b

a 0 c

b c 0


j.




0 1 −1 0
3 0 0 2
0 1 2 1
5 0 0 7


k.




1 0 3 1
2 2 6 0
−1 0 −3 1

4 1 12 0


l.




3 1 −5 2
1 3 0 1
1 0 5 2
1 1 2 −1


m.




4 −1 3 −1
3 1 0 2
0 1 2 2
1 2 −1 1


n.




1 −1 5 5
3 1 2 4
−1 −3 8 0

1 1 2 −1


o.




0 0 0 a

0 0 b p

0 c q k

d s t u


p.

Exercise 3.1.2 Show that det A = 0 if A has a row or
column consisting of zeros.

Exercise 3.1.3 Show that the sign of the position in the
last row and the last column of A is always +1.

Exercise 3.1.4 Show that det I = 1 for any identity ma-
trix I.

Exercise 3.1.5 Evaluate the determinant of each matrix
by reducing it to upper triangular form.




1 −1 2
3 1 1
2 −1 3


a.



−1 3 1

2 5 3
1 −2 1


b.




−1 −1 1 0
2 1 1 3
0 1 1 2
1 3 −1 2


c.




2 3 1 1
0 2 −1 3
0 5 1 1
1 1 2 5


d.

Exercise 3.1.6 Evaluate by cursory inspection:

a. det




a b c

a+1 b+1 c+1
a−1 b−1 c−1



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b. det




a b c

a+b 2b c+b

2 2 2




Exercise 3.1.7 If det




a b c

p q r

x y z


=−1 compute:

a. det



−x −y −z

3p+a 3q+b 3r+ c

2p 2q 2r




b. det



−2a −2b −2c

2p+ x 2q+ y 2r+ z

3x 3y 3z




Exercise 3.1.8 Show that:

a. det




p+ x q+ y r+ z

a+ x b+ y c+ z

a+ p b+q c+ r


= 2 det




a b c

p q r

x y z




b. det




2a+ p 2b+q 2c+ r

2p+ x 2q+ y 2r+ z

2x+a 2y+b 2z+ c


= 9 det




a b c

p q r

x y z




Exercise 3.1.9 In each case either prove the statement
or give an example showing that it is false:

a. det (A+B) = det A+ det B.

b. If det A = 0, then A has two equal rows.

c. If A is 2×2, then det (AT ) = det A.

d. If R is the reduced row-echelon form of A, then
det A = det R.

e. If A is 2×2, then det (7A) = 49 det A.

f. det (AT ) =− det A.

g. det (−A) =− det A.

h. If det A = det B where A and B are the same size,
then A = B.

Exercise 3.1.10 Compute the determinant of each ma-
trix, using Theorem 3.1.5.

a.




1 −1 2 0 −2
0 1 0 4 1
1 1 5 0 0
0 0 0 3 −1
0 0 0 1 1




b.




1 2 0 3 0
−1 3 1 4 0

0 0 2 1 1
0 0 −1 0 2
0 0 3 0 1




Exercise 3.1.11 If det A = 2, det B =−1, and det C =
3, find:

det




A X Y

0 B Z

0 0 C


a. det




A 0 0
X B 0
Y Z C


b.

det




A X Y

0 B 0
0 Z C


c. det




A X 0
0 B 0
Y Z C


d.

Exercise 3.1.12 If A has three columns with only the
top two entries nonzero, show that det A = 0.

Exercise 3.1.13

a. Find det A if A is 3×3 and det (2A) = 6.

b. Under what conditions is det (−A) = det A?

Exercise 3.1.14 Evaluate by first adding all other rows
to the first row.

a. det




x−1 2 3
2 −3 x−2
−2 x −2




b. det




x−1 −3 1
2 −1 x−1
−3 x+2 −2




Exercise 3.1.15

a. Find b if det




5 −1 x

2 6 y

−5 4 z


= ax+by+ cz.
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b. Find c if det




2 x −1
1 y 3
−3 z 4


= ax+by+ cz.

Exercise 3.1.16 Find the real numbers x and y such that
det A = 0 if:

A =




0 x y

y 0 x

x y 0


a. A=




1 x x

−x −2 x

−x −x −3


b.

A =




1 x x2 x3

x x2 x3 1
x2 x3 1 x

x3 1 x x2


c.

A =




x y 0 0
0 x y 0
0 0 x y

y 0 0 x


d.

Exercise 3.1.17 Show that

det




0 1 1 1
1 0 x x

1 x 0 x

1 x x 0


=−3x2

Exercise 3.1.18 Show that

det




1 x x2 x3

a 1 x x2

p b 1 x

q r c 1


= (1−ax)(1−bx)(1− cx).

Exercise 3.1.19

Given the polynomial p(x) = a+bx+cx2 +dx3 +x4, the

matrix C =




0 1 0 0
0 0 1 0
0 0 0 1
−a −b −c −d


 is called the com-

panion matrix of p(x). Show that det (xI−C) = p(x).

Exercise 3.1.20 Show that

det




a+ x b+ x c+ x

b+ x c+ x a+ x

c+ x a+ x b+ x




= (a+b+ c+3x)[(ab+ac+bc)− (a2 +b2 + c2)]

Exercise 3.1.21 . Prove Theorem 3.1.6. [Hint: Expand
the determinant along column j.]

Exercise 3.1.22 Show that

det




0 0 · · · 0 a1

0 0 · · · a2 ∗
...

...
...

...
0 an−1 · · · ∗ ∗
an ∗ · · · ∗ ∗



= (−1)ka1a2 · · ·an

where either n = 2k or n = 2k+1, and ∗-entries are arbi-
trary.

Exercise 3.1.23 By expanding along the first column,
show that:

det




1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 1
1 0 0 0 · · · 0 1




= 1+(−1)n+1

if the matrix is n×n, n≥ 2.

Exercise 3.1.24 Form matrix B from a matrix A by writ-
ing the columns of A in reverse order. Express det B in
terms of det A.

Exercise 3.1.25 Prove property 3 of Theorem 3.1.2 by
expanding along the row (or column) in question.

Exercise 3.1.26 Show that the line through two distinct
points (x1, y1) and (x2, y2) in the plane has equation

det




x y 1
x1 y1 1
x2 y2 1


= 0

Exercise 3.1.27 Let A be an n×n matrix. Given a poly-
nomial p(x) = a0 +a1x+ · · ·+amxm, we write
p(A) = a0I+a1A+ · · ·+amAm.

For example, if p(x) = 2−3x+5x2, then
p(A) = 2I−3A+5A2. The characteristic polynomial of
A is defined to be cA(x) = det [xI−A], and the Cayley-
Hamilton theorem asserts that cA(A) = 0 for any matrix
A.

a. Verify the theorem for

i. A =

[
3 2
1 −1

]

ii. A=




1 −1 1
0 1 0
8 2 2




b. Prove the theorem for A =

[
a b

c d

]
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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of these theorems is
that a square matrix A is invertible if and only if det A 6= 0. Moreover, determinants are used to give a
formula for A−1 which, in turn, yields a formula (called Cramer’s rule) for the solution of any system of
linear equations with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the determinant of a product of
matrices. The proof is given at the end of this section.

Theorem 3.2.1: Product Theorem

If A and B are n×n matrices, then det (AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite unexpected. Here is an
example where it reveals an important numerical identity.

Example 3.2.1

If A =

[
a b

−b a

]
and B =

[
c d

−d c

]
then AB =

[
ac−bd ad +bc

−(ad +bc) ac−bd

]
.

Hence det A det B = det (AB) gives the identity

(a2 +b2)(c2 +d2) = (ac−bd)2 +(ad +bc)2

Theorem 3.2.1 extends easily to det (ABC) = det A det B det C. In fact, induction gives

det (A1A2 · · ·Ak−1Ak) = det A1 det A2 · · · det Ak−1 det Ak

for any square matrices A1, . . . , Ak of the same size. In particular, if each Ai = A, we obtain

det (Ak) = (detA)k, for any k ≥ 1

We can now give the invertibility condition.

Theorem 3.2.2

An n×n matrix A is invertible if and only if det A 6= 0. When this is the case, det (A−1) = 1
det A

Proof. If A is invertible, then AA−1 = I; so the product theorem gives

1 = det I = det (AA−1) = det A det A−1

Hence, det A 6= 0 and also det A−1 = 1
det A

.
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Conversely, if det A 6= 0, we show that A can be carried to I by elementary row operations (and invoke
Theorem 2.4.5). Certainly, A can be carried to its reduced row-echelon form R, so R = Ek · · ·E2E1A where
the Ei are elementary matrices (Theorem 2.5.1). Hence the product theorem gives

det R = det Ek · · · det E2 det E1 det A

Since det E 6= 0 for all elementary matrices E, this shows det R 6= 0. In particular, R has no row of zeros,
so R = I because R is square and reduced row-echelon. This is what we wanted.

Example 3.2.2

For which values of c does A =




1 0 −c

−1 3 1
0 2c −4


 have an inverse?

Solution. Compute det A by first adding c times column 1 to column 3 and then expanding along
row 1.

det A = det




1 0 −c

−1 3 1
0 2c −4


= det




1 0 0
−1 3 1− c

0 2c −4


= 2(c+2)(c−3)

Hence, det A = 0 if c =−2 or c = 3, and A has an inverse if c 6=−2 and c 6= 3.

Example 3.2.3

If a product A1A2 · · ·Ak of square matrices is invertible, show that each Ai is invertible.

Solution. We have det A1 det A2 · · · det Ak = det (A1A2 · · ·Ak) by the product theorem, and
det (A1A2 · · ·Ak) 6= 0 by Theorem 3.2.2 because A1A2 · · ·Ak is invertible. Hence

det A1 det A2 · · · det Ak 6= 0

so det Ai 6= 0 for each i. This shows that each Ai is invertible, again by Theorem 3.2.2.

Theorem 3.2.3

If A is any square matrix, det AT = det A.

Proof. Consider first the case of an elementary matrix E. If E is of type I or II, then ET = E; so certainly
det ET = det E. If E is of type III, then ET is also of type III; so det ET = 1 = det E by Theorem 3.1.2.
Hence, det ET = det E for every elementary matrix E.

Now let A be any square matrix. If A is not invertible, then neither is AT ; so det AT = 0 = det A by
Theorem 3.2.2. On the other hand, if A is invertible, then A = Ek · · ·E2E1, where the Ei are elementary
matrices (Theorem 2.5.2). Hence, AT = ET

1 ET
2 · · ·ET

k so the product theorem gives
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det AT = det ET
1 det ET

2 · · · det ET
k = det E1 det E2 · · · det Ek

= det Ek · · · det E2 det E1

= det A

This completes the proof.

Example 3.2.4

If det A = 2 and det B = 5, calculate det (A3B−1AT B2).

Solution. We use several of the facts just derived.

det (A3B−1AT B2) = det (A3) det (B−1) det (AT ) det (B2)

= (det A)3 1
det B

det A(det B)2

= 23 · 1
5 ·2 ·5

2

= 80

Example 3.2.5

A square matrix is called orthogonal if A−1 = AT . What are the possible values of det A if A is
orthogonal?

Solution. If A is orthogonal, we have I = AAT . Take determinants to obtain

1 = det I = det (AAT ) = det A det AT = (det A)2

Since det A is a number, this means det A =±1.

Hence Theorems 2.6.4 and 2.6.5 imply that rotation about the origin and reflection about a line through
the origin in R2 have orthogonal matrices with determinants 1 and −1 respectively. In fact they are the
only such transformations of R2. We have more to say about this in Section 8.2.

Adjugates

In Section 2.4 we defined the adjugate of a 2× 2 matrix A =

[
a b

c d

]
to be adj (A) =

[
d −b

−c a

]
. Then

we verified that A(adj A) = (det A)I = (adj A)A and hence that, if det A 6= 0, A−1 = 1
det A

adj A. We are
now able to define the adjugate of an arbitrary square matrix and to show that this formula for the inverse
remains valid (when the inverse exists).

Recall that the (i, j)-cofactor ci j(A) of a square matrix A is a number defined for each position (i, j)
in the matrix. If A is a square matrix, the cofactor matrix of A is defined to be the matrix

[
ci j(A)

]
whose

(i, j)-entry is the (i, j)-cofactor of A.
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Definition 3.3 Adjugate of a Matrix

The adjugate4of A, denoted adj (A), is the transpose of this cofactor matrix; in symbols,

adj (A) =
[
ci j(A)

]T

This agrees with the earlier definition for a 2×2 matrix A as the reader can verify.

Example 3.2.6

Compute the adjugate of A =




1 3 −2
0 1 5
−2 −6 7


 and calculate A(adj A) and (adj A)A.

Solution. We first find the cofactor matrix.




c11(A) c12(A) c13(A)
c21(A) c22(A) c23(A)
c31(A) c32(A) c33(A)


=




∣∣∣∣
1 5
−6 7

∣∣∣∣ −
∣∣∣∣

0 5
−2 7

∣∣∣∣
∣∣∣∣

0 1
−2 −6

∣∣∣∣

−
∣∣∣∣

3 −2
−6 7

∣∣∣∣
∣∣∣∣

1 −2
−2 7

∣∣∣∣ −
∣∣∣∣

1 3
−2 −6

∣∣∣∣
∣∣∣∣

3 −2
1 5

∣∣∣∣ −
∣∣∣∣

1 −2
0 5

∣∣∣∣
∣∣∣∣

1 3
0 1

∣∣∣∣




=




37 −10 2
−9 3 0
17 −5 1




Then the adjugate of A is the transpose of this cofactor matrix.

adj A =




37 −10 2
−9 3 0
17 −5 1




T

=




37 −9 17
−10 3 −5

2 0 1




The computation of A(adj A) gives

A(adj A) =




1 3 −2
0 1 5
−2 −6 7






37 −9 17
−10 3 −5

2 0 1


=




3 0 0
0 3 0
0 0 3


= 3I

and the reader can verify that also (adj A)A = 3I. Hence, analogy with the 2×2 case would
indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix A. To see why this is so, consider

4This is also called the classical adjoint of A, but the term “adjoint” has another meaning.
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the general 3×3 case. Writing ci j(A) = ci j for short, we have

adj A =




c11 c12 c13

c21 c22 c23

c31 c32 c33




T

=




c11 c21 c31

c12 c22 c32

c13 c23 c33




If A =
[
ai j

]
in the usual notation, we are to verify that A(adj A) = (det A)I. That is,

A(adj A) =




a11 a12 a13

a21 a22 a23

a31 a32 a33






c11 c21 c31

c12 c22 c32

c13 c23 c33


=




det A 0 0
0 det A 0
0 0 det A




Consider the (1, 1)-entry in the product. It is given by a11c11+a12c12+a13c13, and this is just the cofactor
expansion of det A along the first row of A. Similarly, the (2, 2)-entry and the (3, 3)-entry are the cofactor
expansions of det A along rows 2 and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product A(adj A) are all zero.
Consider the (1, 2)-entry of the product. It is given by a11c21 + a12c22 + a13c23. This looks like the
cofactor expansion of the determinant of some matrix. To see which, observe that c21, c22, and c23 are
all computed by deleting row 2 of A (and one of the columns), so they remain the same if row 2 of A is
changed. In particular, if row 2 of A is replaced by row 1, we obtain

a11c21 +a12c22 +a13c23 = det




a11 a12 a13

a11 a12 a13

a31 a32 a33


= 0

where the expansion is along row 2 and where the determinant is zero because two rows are identical. A
similar argument shows that the other off-diagonal entries are zero.

This argument works in general and yields the first part of Theorem 3.2.4. The second assertion follows
from the first by multiplying through by the scalar 1

det A
.

Theorem 3.2.4: Adjugate Formula

If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A

In particular, if det A 6= 0, the inverse of A is given by

A−1 = 1
det A

adj A

It is important to note that this theorem is not an efficient way to find the inverse of the matrix A. For
example, if A were 10×10, the calculation of adj A would require computing 102 = 100 determinants of
9× 9 matrices! On the other hand, the matrix inversion algorithm would find A−1 with about the same
effort as finding det A. Clearly, Theorem 3.2.4 is not a practical result: its virtue is that it gives a formula
for A−1 that is useful for theoretical purposes.
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Example 3.2.7

Find the (2, 3)-entry of A−1 if A =




2 1 3
5 −7 1
3 0 −6


.

Solution. First compute

det A =

∣∣∣∣∣∣

2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 1 7
5 −7 11
3 0 0

∣∣∣∣∣∣
= 3

∣∣∣∣
1 7
−7 11

∣∣∣∣= 180

Since A−1 = 1
det A

adj A = 1
180

[
ci j(A)

]T
, the (2, 3)-entry of A−1 is the (3, 2)-entry of the matrix

1
180

[
ci j(A)

]
; that is, it equals 1

180c32(A) =
1

180

(
−
∣∣∣∣

2 3
5 1

∣∣∣∣
)
= 13

180 .

Example 3.2.8

If A is n×n, n≥ 2, show that det (adj A) = (det A)n−1.

Solution. Write d = det A; we must show that det (adj A) = dn−1. We have A(adj A) = dI by
Theorem 3.2.4, so taking determinants gives d det (adj A) = dn. Hence we are done if d 6= 0.
Assume d = 0; we must show that det (adj A) = 0, that is, adj A is not invertible. If A 6= 0, this
follows from A(adj A) = dI = 0; if A = 0, it follows because then adj A = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

Ax = b

is a system of n equations in n variables x1, x2, . . . , xn. Here A is the n×n coefficient matrix, and x and b

are the columns

x =




x1

x2
...

xn


 and b =




b1

b2
...

bn




of variables and constants, respectively. If det A 6= 0, we left multiply by A−1 to obtain the solution
x = A−1b. When we use the adjugate formula, this becomes




x1

x2
...

xn


= 1

det A
(adj A)b
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= 1
det A




c11(A) c21(A) · · · cn1(A)
c12(A) c22(A) · · · cn2(A)

...
...

...
c1n(A) c2n(A) · · · cnn(A)







b1

b2
...

bn




Hence, the variables x1, x2, . . . , xn are given by

x1 =
1

det A
[b1c11(A)+b2c21(A)+ · · ·+bncn1(A)]

x2 =
1

det A
[b1c12(A)+b2c22(A)+ · · ·+bncn2(A)]

...
...

xn =
1

det A
[b1c1n(A)+b2c2n(A)+ · · ·+bncnn(A)]

Now the quantity b1c11(A)+b2c21(A)+ · · ·+bncn1(A) occurring in the formula for x1 looks like the
cofactor expansion of the determinant of a matrix. The cofactors involved are c11(A), c21(A), . . . , cn1(A),
corresponding to the first column of A. If A1 is obtained from A by replacing the first column of A by b,
then ci1(A1) = ci1(A) for each i because column 1 is deleted when computing them. Hence, expanding
det (A1) by the first column gives

det A1 = b1c11(A1)+b2c21(A1)+ · · ·+bncn1(A1)

= b1c11(A)+b2c21(A)+ · · ·+bncn1(A)

= (det A)x1

Hence, x1 =
det A1
det A

and similar results hold for the other variables.

Theorem 3.2.5: Cramer’s Rule5

If A is an invertible n×n matrix, the solution to the system

Ax = b

of n equations in the variables x1, x2, . . . , xn is given by

x1 =
det A1
det A

, x2 =
det A2
det A

, · · · , xn =
det An

det A

where, for each k, Ak is the matrix obtained from A by replacing column k by b.

Example 3.2.9

Find x1, given the following system of equations.

5x1 + x2− x3 = 4
9x1 + x2− x3 = 1

x1− x2 + 5x3 = 2

5Gabriel Cramer (1704–1752) was a Swiss mathematician who wrote an introductory work on algebraic curves. He popu-
larized the rule that bears his name, but the idea was known earlier.
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Solution. Compute the determinants of the coefficient matrix A and the matrix A1 obtained from it
by replacing the first column by the column of constants.

det A = det




5 1 −1
9 1 −1
1 −1 5


=−16

det A1 = det




4 1 −1
1 1 −1
2 −1 5


= 12

Hence, x1 =
det A1
det A

=−3
4 by Cramer’s rule.

Cramer’s rule is not an efficient way to solve linear systems or invert matrices. True, it enabled us to
calculate x1 here without computing x2 or x3. Although this might seem an advantage, the truth of the
matter is that, for large systems of equations, the number of computations needed to find all the variables
by the gaussian algorithm is comparable to the number required to find one of the determinants involved in
Cramer’s rule. Furthermore, the algorithm works when the matrix of the system is not invertible and even
when the coefficient matrix is not square. Like the adjugate formula, then, Cramer’s rule is not a practical
numerical technique; its virtue is theoretical.

Polynomial Interpolation

Example 3.2.10

0 5 10 12 15

2

4

6

(5, 3)

(10, 5)
(15, 6)

Diameter

Age

A forester wants to estimate the age (in years) of a tree by measuring
the diameter of the trunk (in cm). She obtains the following data:

Tree 1 Tree 2 Tree 3
Trunk Diameter 5 10 15
Age 3 5 6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution.

The forester decides to “fit” a quadratic polynomial

p(x) = r0 + r1x+ r2x2

to the data, that is choose the coefficients r0, r1, and r2 so that p(5) = 3, p(10) = 5, and p(15) = 6,
and then use p(12) as the estimate. These conditions give three linear equations:

r0 + 5r1 + 25r2 = 3
r0 + 10r1 + 100r2 = 5
r0 + 15r1 + 225r2 = 6
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The (unique) solution is r0 = 0, r1 =
7

10 , and r2 =− 1
50 , so

p(x) = 7
10x− 1

50x2 = 1
50x(35− x)

Hence the estimate is p(12) = 5.52.

As in Example 3.2.10, it often happens that two variables x and y are related but the actual functional
form y = f (x) of the relationship is unknown. Suppose that for certain values x1, x2, . . . , xn of x the
corresponding values y1, y2, . . . , yn are known (say from experimental measurements). One way to
estimate the value of y corresponding to some other value a of x is to find a polynomial6

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

that “fits” the data, that is p(xi) = yi holds for each i = 1, 2, . . . , n. Then the estimate for y is p(a). As we
will see, such a polynomial always exists if the xi are distinct.

The conditions that p(xi) = yi are

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2
...

...
...

...
...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

In matrix form, this is 


1 x1 x2
1 · · · xn−1

1
1 x2 x2

2 · · · xn−1
2

...
...

...
...

1 xn x2
n · · · xn−1

n







r0

r1
...

rn−1


=




y1

y2
...

yn


 (3.3)

It can be shown (see Theorem 3.2.7) that the determinant of the coefficient matrix equals the product of
all terms (xi− x j) with i > j and so is nonzero (because the xi are distinct). Hence the equations have a
unique solution r0, r1, . . . , rn−1. This proves

Theorem 3.2.6

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and assume that the xi are distinct. Then
there exists a unique polynomial

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for each i = 1, 2, . . . , n.

The polynomial in Theorem 3.2.6 is called the interpolating polynomial for the data.

6A polynomial is an expression of the form a0 + a1x+ a2x2 + · · ·+ anxn where the ai are numbers and x is a variable. If
an 6= 0, the integer n is called the degree of the polynomial, and an is called the leading coefficient. See Appendix D.
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We conclude by evaluating the determinant of the coefficient matrix in Equation 3.3. If a1, a2, . . . , an

are numbers, the determinant

det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

1 a3 a2
3 · · · an−1

3
...

...
...

...
1 an a2

n · · · an−1
n




is called a Vandermonde determinant.7 There is a simple formula for this determinant. If n = 2, it equals
(a2−a1); if n = 3, it is (a3−a2)(a3−a1)(a2−a1) by Example 3.1.8. The general result is the product

∏
1≤ j<i≤n

(ai−a j)

of all factors (ai−a j) where 1≤ j < i≤ n. For example, if n = 4, it is

(a4−a3)(a4−a2)(a4−a1)(a3−a2)(a3−a1)(a2−a1)

Theorem 3.2.7

Let a1, a2, . . . , an be numbers where n≥ 2. Then the corresponding Vandermonde determinant is
given by

det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

1 a3 a2
3 · · · an−1

3
...

...
...

...
1 an a2

n · · · an−1
n



= ∏

1≤ j<i≤n

(ai−a j)

Proof. We may assume that the ai are distinct; otherwise both sides are zero. We proceed by induction on
n≥ 2; we have it for n = 2, 3. So assume it holds for n−1. The trick is to replace an by a variable x, and
consider the determinant

p(x) = det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

...
...

...
...

1 an−1 a2
n−1 · · · an−1

n−1
1 x x2 · · · xn−1




Then p(x) is a polynomial of degree at most n− 1 (expand along the last row), and p(ai) = 0 for each
i = 1, 2, . . . , n− 1 because in each case there are two identical rows in the determinant. In particular,
p(a1) = 0, so we have p(x) = (x−a1)p1(x) by the factor theorem (see Appendix D). Since a2 6= a1, we
obtain p1(a2) = 0, and so p1(x) = (x−a2)p2(x). Thus p(x) = (x−a1)(x−a2)p2(x). As the ai are distinct,
this process continues to obtain

p(x) = (x−a1)(x−a2) · · ·(x−an−1)d (3.4)

7Alexandre Théophile Vandermonde (1735–1796) was a French mathematician who made contributions to the theory of
equations.
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where d is the coefficient of xn−1 in p(x). By the cofactor expansion of p(x) along the last row we get

d = (−1)n+n det




1 a1 a2
1 · · · an−2

1
1 a2 a2

2 · · · an−2
2

...
...

...
...

1 an−1 a2
n−1 · · · an−2

n−1




Because (−1)n+n = 1 the induction hypothesis shows that d is the product of all factors (ai−a j) where
1≤ j < i≤ n−1. The result now follows from Equation 3.4 by substituting an for x in p(x).

Proof of Theorem 3.2.1. If A and B are n×n matrices we must show that

det (AB) = det A det B (3.5)

Recall that if E is an elementary matrix obtained by doing one row operation to In, then doing that operation
to a matrix C (Lemma 2.5.1) results in EC. By looking at the three types of elementary matrices separately,
Theorem 3.1.2 shows that

det (EC) = det E det C for any matrix C (3.6)

Thus if E1, E2, . . . , Ek are all elementary matrices, it follows by induction that

det (Ek · · ·E2E1C) = det Ek · · · det E2 det E1 det C for any matrix C (3.7)

Lemma. If A has no inverse, then det A = 0.

Proof. Let A→ R where R is reduced row-echelon, say En · · ·E2E1A = R. Then R has a row of zeros by
Part (4) of Theorem 2.4.5, and hence det R = 0. But then Equation 3.7 gives det A = 0 because det E 6= 0
for any elementary matrix E. This proves the Lemma.

Now we can prove Equation 3.5 by considering two cases.

Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)−1] = I) so A is invertible by
Corollary 2.4.2 to Theorem 2.4.5. Hence the above Lemma (twice) gives

det (AB) = 0 = 0 det B = det A det B

proving Equation 3.5 in this case.

Case 2. A has an inverse. Then A is a product of elementary matrices by Theorem 2.5.2, say A =
E1E2 · · ·Ek. Then Equation 3.7 with C = I gives

det A = det (E1E2 · · ·Ek) = det E1 det E2 · · · det Ek

But then Equation 3.7 with C = B gives

det (AB) = det [(E1E2 · · ·Ek)B] = det E1 det E2 · · · det Ek det B = det A det B

and Equation 3.5 holds in this case too.
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Exercises for 3.2

Exercise 3.2.1 Find the adjugate of each of the follow-
ing matrices.




5 1 3
−1 2 3

1 4 8


a.




1 −1 2
3 1 0
0 −1 1


b.




1 0 −1
−1 1 0

0 −1 1


c. 1

3



−1 2 2

2 −1 2
2 2 −1


d.

Exercise 3.2.2 Use determinants to find which real val-
ues of c make each of the following matrices invertible.




1 0 3
3 −4 c

2 5 8


a.




0 c −c

−1 2 1
c −c c


b.




c 1 0
0 2 c

−1 c 5


c.




4 c 3
c 2 c

5 c 4


d.




1 2 −1
0 −1 c

2 c 1


e.




1 c −1
c 1 1
0 1 c


f.

Exercise 3.2.3 Let A, B, and C denote n× n matrices
and assume that det A = −1, det B = 2, and det C = 3.
Evaluate:

det (A3BCT B−1)a. det (B2C−1AB−1CT )b.

Exercise 3.2.4 Let A and B be invertible n×n matrices.
Evaluate:

det (B−1AB)a. det (A−1B−1AB)b.

Exercise 3.2.5 If A is 3× 3 and det (2A−1) = −4 and
det (A3(B−1)T ) =−4, find det A and det B.

Exercise 3.2.6 Let A =




a b c

p q r

u v w


 and assume that

det A = 3. Compute:

a. det (2B−1) where B =




4u 2a −p

4v 2b −q

4w 2c −r




b. det (2C−1) where C =




2p −a+u 3u

2q −b+ v 3v

2r −c+w 3w




Exercise 3.2.7 If det

[
a b

c d

]
=−2 calculate:

a. det




2 −2 0
c+1 −1 2a

d−2 2 2b




b. det




2b 0 4d

1 2 −2
a+1 2 2(c−1)




c. det (3A−1) where A =

[
3c a+ c

3d b+d

]

Exercise 3.2.8 Solve each of the following by Cramer’s
rule:

2x + y= 1
3x + 7y=−2

a.
3x + 4y = 9
2x− y=−1

b.

5x + y− z=−7
2x− y− 2z = 6
3x + 2z =−7

c.
4x− y+ 3z= 1
6x + 2y− z= 0
3x + 3y + 2z=−1

d.

Exercise 3.2.9 Use Theorem 3.2.4 to find the (2, 3)-
entry of A−1 if:

A =




3 2 1
1 1 2
−1 2 1


a. A =




1 2 −1
3 1 1
0 4 7


b.

Exercise 3.2.10 Explain what can be said about det A

if:

A2 = Aa. A2 = Ib.

A3 = Ac. PA = P and P is
invertible

d.

A2 = uA and A is n×ne. A =−AT and A is n×
n

f.

A2 + I = 0 and A is
n×n

g.
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Exercise 3.2.11 Let A be n×n. Show that uA = (uI)A,
and use this with Theorem 3.2.1 to deduce the result in
Theorem 3.1.3: det (uA) = un det A.

Exercise 3.2.12 If A and B are n× n matrices, if AB =
−BA, and if n is odd, show that either A or B has no in-
verse.

Exercise 3.2.13 Show that det AB = det BA holds for
any two n×n matrices A and B.

Exercise 3.2.14 If Ak = 0 for some k ≥ 1, show that A

is not invertible.

Exercise 3.2.15 If A−1 = AT , describe the cofactor ma-
trix of A in terms of A.

Exercise 3.2.16 Show that no 3×3 matrix A exists such
that A2+ I = 0. Find a 2×2 matrix A with this property.

Exercise 3.2.17 Show that det (A+BT ) = det (AT +B)
for any n×n matrices A and B.

Exercise 3.2.18 Let A and B be invertible n×n matrices.
Show that det A = det B if and only if A =UB where U

is a matrix with det U = 1.

Exercise 3.2.19 For each of the matrices in Exercise 2,
find the inverse for those values of c for which it exists.

Exercise 3.2.20 In each case either prove the statement
or give an example showing that it is false:

a. If adj A exists, then A is invertible.

b. If A is invertible and adj A = A−1, then det A = 1.

c. det (AB) = det (BT A).

d. If det A 6= 0 and AB = AC, then B =C.

e. If AT =−A, then det A =−1.

f. If adj A = 0, then A = 0.

g. If A is invertible, then adj A is invertible.

h. If A has a row of zeros, so also does adj A.

i. det (AT A)> 0 for all square matrices A.

j. det (I+A) = 1+ det A.

k. If AB is invertible, then A and B are invertible.

l. If det A = 1, then adj A = A.

m. If A is invertible and det A = d, then adj A =
dA−1.

Exercise 3.2.21 If A is 2× 2 and det A = 0, show that
one column of A is a scalar multiple of the other. [Hint:
Definition 2.5 and Part (2) of Theorem 2.4.5.]

Exercise 3.2.22 Find a polynomial p(x) of degree 2
such that:

a. p(0) = 2, p(1) = 3, p(3) = 8

b. p(0) = 5, p(1) = 3, p(2) = 5

Exercise 3.2.23 Find a polynomial p(x) of degree 3
such that:

a. p(0) = p(1) = 1, p(−1) = 4, p(2) =−5

b. p(0) = p(1) = 1, p(−1) = 2, p(−2) =−3

Exercise 3.2.24 Given the following data pairs, find
the interpolating polynomial of degree 3 and estimate the
value of y corresponding to x = 1.5.

a. (0, 1), (1, 2), (2, 5), (3, 10)

b. (0, 1), (1, 1.49), (2, −0.42), (3, −11.33)

c. (0, 2), (1, 2.03), (2, −0.40), (−1, 0.89)

Exercise 3.2.25 If A =




1 a b

−a 1 c

−b −c 1


 show that

det A = 1+ a2 + b2 + c2. Hence, find A−1 for any a, b,
and c.

Exercise 3.2.26

a. Show that A =




a p q

0 b r

0 0 c


 has an inverse if and

only if abc 6= 0, and find A−1 in that case.

b. Show that if an upper triangular matrix is invert-
ible, the inverse is also upper triangular.

Exercise 3.2.27 Let A be a matrix each of whose entries
are integers. Show that each of the following conditions
implies the other.

1. A is invertible and A−1 has integer entries.

2. det A = 1 or −1.
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Exercise 3.2.28 If A−1 =




3 0 1
0 2 3
3 1 −1


 find adj A.

Exercise 3.2.29 If A is 3 × 3 and det A = 2, find
det (A−1 +4 adj A).

Exercise 3.2.30 Show that det

[
0 A

B X

]
= det A det B

when A and B are 2×2. What if A and B are 3×3?

[Hint: Block multiply by

[
0 I

I 0

]
.]

Exercise 3.2.31 Let A be n×n, n ≥ 2, and assume one
column of A consists of zeros. Find the possible values
of rank (adj A).

Exercise 3.2.32 If A is 3× 3 and invertible, compute
det (−A2(adj A)−1).

Exercise 3.2.33 Show that adj (uA) = un−1 adj A for all
n×n matrices A.

Exercise 3.2.34 Let A and B denote invertible n×n ma-
trices. Show that:

a. adj (adj A) = (det A)n−2A (here n≥ 2) [Hint: See
Example 3.2.8.]

b. adj (A−1) = (adj A)−1

c. adj (AT ) = (adj A)T

d. adj (AB) = (adj B)(adj A) [Hint: Show that
AB adj (AB) = AB adj B adj A.]

3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a region, the economy
of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in general and various
methods have been developed in special cases. In this section we describe one such method, called diag-

onalization, which is one of the most important techniques in linear algebra. A very fertile example of
this procedure is in modelling the growth of the population of an animal species. This has attracted more
attention in recent years with the ever increasing awareness that many species are endangered. To motivate
the technique, we begin by setting up a simple model of a bird population in which we make assumptions
about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of birds. Because the number of males and
females are nearly equal, we count only females. We assume that each female remains a juvenile
for one year and then becomes an adult, and that only adults have offspring. We make three
assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice the number of adult females
alive the year before (we say the reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult survival rate is 1
2).

3. One quarter of the juvenile females in any year survive into adulthood (the juvenile survival

rate is 1
4).

If there were 100 adult females and 40 juvenile females alive initially, compute the population of
females k years later.
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Solution. Let ak and jk denote, respectively, the number of adult and juvenile females after k years,
so that the total female population is the sum ak + jk. Assumption 1 shows that jk+1 = 2ak, while
assumptions 2 and 3 show that ak+1 =

1
2ak +

1
4 jk. Hence the numbers ak and jk in successive years

are related by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write vk =

[
ak

jk

]
and A =

[
1
2

1
4

2 0

]
these equations take the matrix form

vk+1 = Avk, for each k = 0, 1, 2, . . .

Taking k = 0 gives v1 = Av0, then taking k = 1 gives v2 = Av1 = A2v0, and taking k = 2 gives
v3 = Av2 = A3v0. Continuing in this way, we get

vk = Akv0, for each k = 0, 1, 2, . . .

Since v0 =

[
a0

j0

]
=

[
100
40

]
is known, finding the population profile vk amounts to computing Ak

for all k ≥ 0. We will complete this calculation in Example 3.3.12 after some new techniques have
been developed.

Let A be a fixed n× n matrix. A sequence v0, v1, v2, . . . of column vectors in Rn is called a linear

dynamical system8 if v0 is known and the other vk are determined (as in Example 3.3.1) by the conditions

vk+1 = Avk for each k = 0, 1, 2, . . .

These conditions are called a matrix recurrence for the vectors vk. As in Example 3.3.1, they imply that

vk = Akv0 for all k ≥ 0

so finding the columns vk amounts to calculating Ak for k ≥ 0.

Direct computation of the powers Ak of a square matrix A can be time-consuming, so we adopt an
indirect method that is commonly used. The idea is to first diagonalize the matrix A, that is, to find an
invertible matrix P such that

P−1AP = D is a diagonal matrix (3.8)

This works because the powers Dk of the diagonal matrix D are easy to compute, and Equation 3.8 enables
us to compute powers Ak of the matrix A in terms of powers Dk of D. Indeed, we can solve Equation 3.8
for A to get A = PDP−1. Squaring this gives

A2 = (PDP−1)(PDP−1) = PD2P−1

Using this we can compute A3 as follows:

A3 = AA2 = (PDP−1)(PD2P−1) = PD3P−1

8More precisely, this is a linear discrete dynamical system. Many models regard vt as a continuous function of the time t,
and replace our condition between bk+1 and Avk with a differential relationship viewed as functions of time.
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Continuing in this way we obtain Theorem 3.3.1 (even if D is not diagonal).

Theorem 3.3.1

If A = PDP−1 then Ak = PDkP−1 for each k = 1, 2, . . . .

Hence computing Ak comes down to finding an invertible matrix P as in equation Equation 3.8. To do
this it is necessary to first compute certain numbers (called eigenvalues) associated with the matrix A.

Eigenvalues and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A is an n×n matrix, a number λ is called an eigenvalue of A if

Ax = λx for some column x 6= 0 in Rn

In this case, x is called an eigenvector of A corresponding to the eigenvalue λ , or a λ -eigenvector

for short.

Example 3.3.2

If A =

[
3 5
1 −1

]
and x =

[
5
1

]
then Ax = 4x so λ = 4 is an eigenvalue of A with corresponding

eigenvector x.

The matrix A in Example 3.3.2 has another eigenvalue in addition to λ = 4. To find it, we develop a
general procedure for any n×n matrix A.

By definition a number λ is an eigenvalue of the n×n matrix A if and only if Ax= λx for some column
x 6= 0. This is equivalent to asking that the homogeneous system

(λ I−A)x = 0

of linear equations has a nontrivial solution x 6= 0. By Theorem 2.4.5 this happens if and only if the matrix
λ I−A is not invertible and this, in turn, holds if and only if the determinant of the coefficient matrix is
zero:

det (λ I−A) = 0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If A is an n×n matrix, the characteristic polynomial cA(x) of A is defined by

cA(x) = det (xI−A)
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Note that cA(x) is indeed a polynomial in the variable x, and it has degree n when A is an n×n matrix (this
is illustrated in the examples below). The above discussion shows that a number λ is an eigenvalue of A if
and only if cA(λ ) = 0, that is if and only if λ is a root of the characteristic polynomial cA(x). We record
these observations in

Theorem 3.3.2

Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I−A)x = 0

of linear equations with λ I−A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is a routine application of gaussian elimina-
tion, but finding the eigenvalues can be difficult, often requiring computers (see Section 8.5). For now,
the examples and exercises will be constructed so that the roots of the characteristic polynomials are rela-
tively easy to find (usually integers). However, the reader should not be misled by this into thinking that
eigenvalues are so easily obtained for the matrices that occur in practical applications!

Example 3.3.3

Find the characteristic polynomial of the matrix A =

[
3 5
1 −1

]
discussed in Example 3.3.2, and

then find all the eigenvalues and their eigenvectors.

Solution. Since xI−A =

[
x 0
0 x

]
−
[

3 5
1 −1

]
=

[
x−3 −5
−1 x+1

]
we get

cA(x) = det

[
x−3 −5
−1 x+1

]
= x2−2x−8 = (x−4)(x+2)

Hence, the roots of cA(x) are λ1 = 4 and λ2 =−2, so these are the eigenvalues of A. Note that
λ1 = 4 was the eigenvalue mentioned in Example 3.3.2, but we have found a new one: λ2 =−2.
To find the eigenvectors corresponding to λ2 =−2, observe that in this case

(λ2I−A)x =

[
λ2−3 −5
−1 λ2 +1

]
=

[
−5 −5
−1 −1

]

so the general solution to (λ2I−A)x = 0 is x = t

[
−1

1

]
where t is an arbitrary real number.

Hence, the eigenvectors x corresponding to λ 2 are x = t

[
−1

1

]
where t 6= 0 is arbitrary. Similarly,

λ1 = 4 gives rise to the eigenvectors x = t

[
5
1

]
, t 6= 0 which includes the observation in

Example 3.3.2.
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Note that a square matrix A has many eigenvectors associated with any given eigenvalue λ . In fact
every nonzero solution x of (λ I−A)x = 0 is an eigenvector. Recall that these solutions are all linear com-
binations of certain basic solutions determined by the gaussian algorithm (see Theorem 1.3.2). Observe
that any nonzero multiple of an eigenvector is again an eigenvector,9 and such multiples are often more
convenient.10 Any set of nonzero multiples of the basic solutions of (λ I−A)x = 0 will be called a set of
basic eigenvectors corresponding to λ .

Example 3.3.4

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for

A =




2 0 0
1 2 −1
1 3 −2




Solution. Here the characteristic polynomial is given by

cA(x) = det




x−2 0 0
−1 x−2 1
−1 −3 x+2


= (x−2)(x−1)(x+1)

so the eigenvalues are λ1 = 2, λ2 = 1, and λ3 =−1. To find all eigenvectors for λ1 = 2, compute

λ1I−A =




λ1−2 0 0
−1 λ1−2 1
−1 −3 λ1 +2


=




0 0 0
−1 0 1
−1 −3 4




We want the (nonzero) solutions to (λ1I−A)x = 0. The augmented matrix becomes



0 0 0 0
−1 0 1 0
−1 −3 4 0


→




1 0 −1 0
0 1 −1 0
0 0 0 0




using row operations. Hence, the general solution x to (λ1I−A)x = 0 is x = t




1
1
1


 where t is

arbitrary, so we can use x1 =




1
1
1


 as the basic eigenvector corresponding to λ1 = 2. As the

reader can verify, the gaussian algorithm gives basic eigenvectors x2 =




0
1
1


 and x3 =




0
1
3
1




corresponding to λ2 = 1 and λ3 =−1, respectively. Note that to eliminate fractions, we could

instead use 3x3 =




0
1
3


 as the basic λ3-eigenvector.

9In fact, any nonzero linear combination of λ -eigenvectors is again a λ -eigenvector.
10Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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Example 3.3.5

If A is a square matrix, show that A and AT have the same characteristic polynomial, and hence the
same eigenvalues.

Solution. We use the fact that xI−AT = (xI−A)T . Then

cAT (x) = det
(
xI−AT

)
= det

[
(xI−A)T

]
= det (xI−A) = cA(x)

by Theorem 3.2.3. Hence cAT (x) and cA(x) have the same roots, and so AT and A have the same
eigenvalues (by Theorem 3.3.2).

The eigenvalues of a matrix need not be distinct. For example, if A =

[
1 1
0 1

]
the characteristic poly-

nomial is (x− 1)2 so the eigenvalue 1 occurs twice. Furthermore, eigenvalues are usually not computed
as the roots of the characteristic polynomial. There are iterative, numerical methods (for example the
QR-algorithm in Section 8.5) that are much more efficient for large matrices.

A-Invariance

If A is a 2×2 matrix, we can describe the eigenvectors of A geometrically using the following concept. A
line L through the origin in R2 is called A-invariant if Ax is in L whenever x is in L. If we think of A as a
linear transformation R2→ R2, this asks that A carries L into itself, that is the image Ax of each vector x

in L is again in L.

Example 3.3.6

The x axis L =

{[
x

0

]
| x in R

}
is A-invariant for any matrix of the form

A =

[
a b

0 c

]
because

[
a b

0 c

][
x

0

]
=

[
ax

0

]
is L for all x =

[
x

0

]
in L

Lx

x

0 x

y

To see the connection with eigenvectors, let x 6= 0 be any nonzero vec-
tor in R2 and let Lx denote the unique line through the origin containing x

(see the diagram). By the definition of scalar multiplication in Section 2.6,
we see that Lx consists of all scalar multiples of x, that is

Lx = Rx = {tx | t in R}
Now suppose that x is an eigenvector of A, say Ax = λx for some λ in R.
Then if tx is in Lx then

A(tx) = t (Ax) = t(λx) = (tλ )x is again in Lx

That is, Lx is A-invariant. On the other hand, if Lx is A-invariant then Ax is in Lx (since x is in Lx). Hence
Ax = tx for some t in R, so x is an eigenvector for A (with eigenvalue t). This proves:
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Theorem 3.3.3

Let A be a 2×2 matrix, let x 6= 0 be a vector in R2, and let Lx be the line through the origin in R2

containing x. Then

x is an eigenvector of A if and only if Lx is A-invariant

Example 3.3.7

1. If θ is not a multiple of π , show that A =

[
cosθ −sinθ
sinθ cosθ

]
has no real eigenvalue.

2. If m is real show that B = 1
1+m2

[
1−m2 2m

2m m2−1

]
has a 1 as an eigenvalue.

Solution.

1. A induces rotation about the origin through the angle θ (Theorem 2.6.4). Since θ is not a
multiple of π , this shows that no line through the origin is A-invariant. Hence A has no
eigenvector by Theorem 3.3.3, and so has no eigenvalue.

2. B induces reflection Qm in the line through the origin with slope m by Theorem 2.6.5. If x is
any nonzero point on this line then it is clear that Qmx = x, that is Qmx = 1x. Hence 1 is an
eigenvalue (with eigenvector x).

If θ = π
2 in Example 3.3.7, then A =

[
0 −1
1 0

]
so cA(x) = x2 + 1. This polynomial has no root

in R, so A has no (real) eigenvalue, and hence no eigenvector. In fact its eigenvalues are the complex

numbers i and −i, with corresponding eigenvectors

[
1
−i

]
and

[
1
i

]
In other words, A has eigenvalues

and eigenvectors, just not real ones.

Note that every polynomial has complex roots,11 so every matrix has complex eigenvalues. While
these eigenvalues may very well be real, this suggests that we really should be doing linear algebra over the
complex numbers. Indeed, everything we have done (gaussian elimination, matrix algebra, determinants,
etc.) works if all the scalars are complex.

11This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.
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Diagonalization

An n×n matrix D is called a diagonal matrix if all its entries off the main diagonal are zero, that is if D

has the form

D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


= diag (λ1, λ2, · · · , λn)

where λ1, λ2, . . . , λn are numbers. Calculations with diagonal matrices are very easy. Indeed, if
D = diag (λ1, λ2, . . . , λn) and E = diag (µ1, µ2, . . . , µn) are two diagonal matrices, their product DE and
sum D+E are again diagonal, and are obtained by doing the same operations to corresponding diagonal
elements:

DE = diag (λ1µ1, λ2µ2, . . . , λnµn)

D+E = diag (λ1+µ1, λ2 +µ2, . . . , λn +µn)

Because of the simplicity of these formulas, and with an eye on Theorem 3.3.1 and the discussion preced-
ing it, we make another definition:

Definition 3.6 Diagonalizable Matrices

An n×n matrix A is called diagonalizable if

P−1AP is diagonal for some invertible n×n matrix P

Here the invertible matrix P is called a diagonalizing matrix for A.

To discover when such a matrix P exists, we let x1, x2, . . . , xn denote the columns of P and look
for ways to determine when such xi exist and how to compute them. To this end, write P in terms of its
columns as follows:

P = [x1, x2, · · · , xn]

Observe that P−1AP = D for some diagonal matrix D holds if and only if

AP = PD

If we write D = diag (λ1, λ2, . . . , λn), where the λi are numbers to be determined, the equation AP = PD

becomes

A [x1, x2, · · · , xn] = [x1, x2, · · · , xn]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




By the definition of matrix multiplication, each side simplifies as follows

[
Ax1 Ax2 · · · Axn

]
=
[

λ1x1 λ2x2 · · · λnxn

]
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Comparing columns shows that Axi = λixi for each i, so

P−1AP = D if and only if Axi = λixi for each i

In other words, P−1AP = D holds if and only if the diagonal entries of D are eigenvalues of A and the
columns of P are corresponding eigenvectors. This proves the following fundamental result.

Theorem 3.3.4

Let A be an n×n matrix.

1. A is diagonalizable if and only if it has eigenvectors x1, x2, . . . , xn such that the matrix
P =

[
x1 x2 . . . xn

]
is invertible.

2. When this is the case, P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue
of A corresponding to xi.

Example 3.3.8

Diagonalize the matrix A =




2 0 0
1 2 −1
1 3 −2


 in Example 3.3.4.

Solution. By Example 3.3.4, the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 =−1, with

corresponding basic eigenvectors x1 =




1
1
1


 , x2 =




0
1
1


, and x3 =




0
1
3


 respectively. Since

the matrix P =
[

x1 x2 x3
]
=




1 0 0
1 1 1
1 1 3


 is invertible, Theorem 3.3.4 guarantees that

P−1AP =




λ1 0 0
0 λ2 0
0 0 λ3


=




2 0 0
0 1 0
0 0 −1


= D

The reader can verify this directly—easier to check AP = PD.

In Example 3.3.8, suppose we let Q =
[

x2 x1 x3
]

be the matrix formed from the eigenvectors x1,
x2, and x3 of A, but in a different order than that used to form P. Then Q−1AQ = diag (λ2, λ1, λ3) is diag-
onal by Theorem 3.3.4, but the eigenvalues are in the new order. Hence we can choose the diagonalizing
matrix P so that the eigenvalues λi appear in any order we want along the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here is a diagonalizable
matrix where this is not the case.
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Example 3.3.9

Diagonalize the matrix A =




0 1 1
1 0 1
1 1 0




Solution. To compute the characteristic polynomial of A first add rows 2 and 3 of xI−A to row 1:

cA(x) = det




x −1 −1
−1 x −1
−1 −1 x


= det




x−2 x−2 x−2
−1 x −1
−1 −1 x




= det




x−2 0 0
−1 x+1 0
−1 0 x+1


= (x−2)(x+1)2

Hence the eigenvalues are λ1 = 2 and λ2 =−1, with λ2 repeated twice (we say that λ2 has
multiplicity two). However, A is diagonalizable. For λ1 = 2, the system of equations

(λ1I−A)x = 0 has general solution x = t




1
1
1


 as the reader can verify, so a basic λ1-eigenvector

is x1 =




1
1
1


.

Turning to the repeated eigenvalue λ2 =−1, we must solve (λ2I−A)x = 0. By gaussian

elimination, the general solution is x = s



−1

1
0


+ t



−1

0
1


 where s and t are arbitrary. Hence

the gaussian algorithm produces two basic λ2-eigenvectors x2 =



−1

1
0


 and y2 =



−1

0
1


 If we

take P =
[

x1 x2 y2

]
=




1 −1 −1
1 1 0
1 0 1


 we find that P is invertible. Hence

P−1AP = diag (2, −1, −1) by Theorem 3.3.4.

Example 3.3.9 typifies every diagonalizable matrix. To describe the general case, we need some ter-
minology.

Definition 3.7 Multiplicity of an Eigenvalue

An eigenvalue λ of a square matrix A is said to have multiplicity m if it occurs m times as a root of
the characteristic polynomial cA(x).

For example, the eigenvalue λ2 = −1 in Example 3.3.9 has multiplicity 2. In that example the gaussian
algorithm yields two basic λ2-eigenvectors, the same number as the multiplicity. This works in general.
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Theorem 3.3.5

A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields
exactly m basic eigenvectors; that is, if and only if the general solution of the system (λ I−A)x = 0

has exactly m parameters.

One case of Theorem 3.3.5 deserves mention.

Theorem 3.3.6

An n×n matrix with n distinct eigenvalues is diagonalizable.

The proofs of Theorem 3.3.5 and Theorem 3.3.6 require more advanced techniques and are given in Chap-
ter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n×n matrix A:

Step 1. Find the distinct eigenvalues λ of A.

Step 2. Compute a set of basic eigenvectors corresponding to each of these eigenvalues λ as
basic solutions of the homogeneous system (λ I−A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors in all.

Step 4. If A is diagonalizable, the n×n matrix P with these basic eigenvectors as its columns is
a diagonalizing matrix for A, that is, P is invertible and P−1AP is diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex numbers. In this case
the eigenvectors will also have complex entries, but we will not pursue this here.

Example 3.3.10

Show that A =

[
1 1
0 1

]
is not diagonalizable.

Solution 1. The characteristic polynomial is cA(x) = (x−1)2, so A has only one eigenvalue λ1 = 1

of multiplicity 2. But the system of equations (λ1I−A)x = 0 has general solution t

[
1
0

]
, so there

is only one parameter, and so only one basic eigenvector

[
1
2

]
. Hence A is not diagonalizable.

Solution 2. We have cA(x) = (x−1)2 so the only eigenvalue of A is λ = 1. Hence, if A were

diagonalizable, Theorem 3.3.4 would give P−1AP =

[
1 0
0 1

]
= I for some invertible matrix P.

But then A = PIP−1 = I, which is not the case. So A cannot be diagonalizable.
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Diagonalizable matrices share many properties of their eigenvalues. The following example illustrates
why.

Example 3.3.11

If λ 3 = 5λ for every eigenvalue of the diagonalizable matrix A, show that A3 = 5A.

Solution. Let P−1AP = D = diag (λ1, . . . , λn). Because λ 3
i = 5λi for each i, we obtain

D3 = diag (λ 3
1 , . . . , λ 3

n ) = diag (5λ1, . . . , 5λn) = 5D

Hence A3 = (PDP−1)3 = PD3P−1 = P(5D)P−1 = 5(PDP−1) = 5A using Theorem 3.3.1. This is
what we wanted.

If p(x) is any polynomial and p(λ ) = 0 for every eigenvalue of the diagonalizable matrix A, an argu-
ment similar to that in Example 3.3.11 shows that p(A) = 0. Thus Example 3.3.11 deals with the case
p(x) = x3− 5x. In general, p(A) is called the evaluation of the polynomial p(x) at the matrix A. For
example, if p(x) = 2x3−3x+5, then p(A) = 2A3−3A+5I—note the use of the identity matrix.

In particular, if cA(x) denotes the characteristic polynomial of A, we certainly have cA(λ ) = 0 for each
eigenvalue λ of A (Theorem 3.3.2). Hence cA(A) = 0 for every diagonalizable matrix A. This is, in fact,
true for any square matrix, diagonalizable or not, and the general result is called the Cayley-Hamilton
theorem. It is proved in Section 8.7 and again in Section 11.1.

Linear Dynamical Systems

We began Section 3.3 with an example from ecology which models the evolution of the population of a
species of birds as time goes on. As promised, we now complete the example—Example 3.3.12 below.

The bird population was described by computing the female population profile vk =

[
ak

jk

]
of the

species, where ak and jk represent the number of adult and juvenile females present k years after the initial
values a0 and j0 were observed. The model assumes that these numbers are related by the following
equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write A =

[
1
2

1
4

2 0

]
the columns vk satisfy vk+1 = Avk for each k = 0, 1, 2, . . . .

Hence vk = Akv0 for each k = 1, 2, . . . . We can now use our diagonalization techniques to determine the
population profile vk for all values of k in terms of the initial values.

Example 3.3.12

Assuming that the initial values were a0 = 100 adult females and j0 = 40 juvenile females,
compute ak and jk for k = 1, 2, . . . .
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Solution. The characteristic polynomial of the matrix A =

[
1
2

1
4

2 0

]
is

cA(x) = x2− 1
2x− 1

2 = (x−1)(x+ 1
2), so the eigenvalues are λ1 = 1 and λ2 =−1

2 and gaussian

elimination gives corresponding basic eigenvectors

[
1
2
1

]
and

[
−1

4
1

]
. For convenience, we can

use multiples x1 =

[
1
2

]
and x2 =

[
−1

4

]
respectively. Hence a diagonalizing matrix is

P =

[
1 −1
2 4

]
and we obtain

P−1AP = D where D =

[
1 0
0 −1

2

]

This gives A = PDP−1 so, for each k ≥ 0, we can compute Ak explicitly:

Ak = PDkP−1 =

[
1 −1
2 4

][
1 0
0 (−1

2)
k

]
1
6

[
4 1
−2 4

]

= 1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

]

Hence we obtain

[
ak

jk

]
= vk = Akv0 =

1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

][
100

40

]

= 1
6

[
440+160(−1

2)
k

880−640(−1
2)

k

]

Equating top and bottom entries, we obtain exact formulas for ak and jk:

ak =
220
3 + 80

3

(
−1

2

)k
and jk =

440
3 + 320

3

(
−1

2

)k
for k = 1, 2, · · ·

In practice, the exact values of ak and jk are not usually required. What is needed is a measure of
how these numbers behave for large values of k. This is easy to obtain here. Since (−1

2)
k is nearly

zero for large k, we have the following approximate values

ak ≈ 220
3 and jk ≈ 440

3 if k is large

Hence, in the long term, the female population stabilizes with approximately twice as many
juveniles as adults.
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Definition 3.8 Linear Dynamical System

If A is an n×n matrix, a sequence v0, v1, v2, . . . of columns in Rn is called a linear dynamical

system if v0 is specified and v1, v2, . . . are given by the matrix recurrence vk+1 = Avk for each
k ≥ 0. We call A the migration matrix of the system.

We have v1 = Av0, then v2 = Av1 = A2v0, and continuing we find

vk = Akv0 for each k = 1, 2, · · · (3.9)

Hence the columns vk are determined by the powers Ak of the matrix A and, as we have seen, these powers
can be efficiently computed if A is diagonalizable. In fact Equation 3.9 can be used to give a nice “formula”
for the columns vk in this case.

Assume that A is diagonalizable with eigenvalues λ1, λ2, . . . , λn and corresponding basic eigenvectors
x1, x2, . . . , xn. If P =

[
x1 x2 . . . xn

]
is a diagonalizing matrix with the xi as columns, then P is

invertible and
P−1AP = D = diag (λ1, λ2, · · · , λn)

by Theorem 3.3.4. Hence A = PDP−1 so Equation 3.9 and Theorem 3.3.1 give

vk = Akv0 = (PDP−1)kv0 = (PDkP−1)v0 = PDk(P−1v0)

for each k = 1, 2, . . . . For convenience, we denote the column P−1v0 arising here as follows:

b = P−1v0 =




b1

b2
...

bn




Then matrix multiplication gives

vk = PDk(P−1v0)

=
[

x1 x2 · · · xn

]




λ k
1 0 · · · 0

0 λ k
2 · · · 0

...
...

. . .
...

0 0 · · · λ k
n







b1

b2
...

bn




=
[

x1 x2 · · · xn

]




b1λ k
1

b2λ k
2

...
b3λ k

n




= b1λ k
1 x1 +b2λ k

2 x2 + · · ·+bnλ k
n xn (3.10)

for each k ≥ 0. This is a useful exact formula for the columns vk. Note that, in particular,

v0 = b1x1 +b2x2 + · · ·+bnxn
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However, such an exact formula for vk is often not required in practice; all that is needed is to estimate

vk for large values of k (as was done in Example 3.3.12). This can be easily done if A has a largest
eigenvalue. An eigenvalue λ of a matrix A is called a dominant eigenvalue of A if it has multiplicity 1
and

|λ |> |µ| for all eigenvalues µ 6= λ

where |λ | denotes the absolute value of the number λ . For example, λ1 = 1 is dominant in Example 3.3.12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By choosing the order
in which the columns xi are placed in P, we may assume that λ1 is dominant among the eigenvalues
λ1, λ2, . . . , λn of A (see the discussion following Example 3.3.8). Now recall the exact expression for vk

in Equation 3.10 above:
vk = b1λ k

1 x1 +b2λ k
2 x2 + · · ·+bnλ k

n xn

Take λ k
1 out as a common factor in this equation to get

vk = λ k
1

[
b1x1 +b2

(
λ2
λ1

)k

x2 + · · ·+bn

(
λn

λ1

)k

xn

]

for each k ≥ 0. Since λ1 is dominant, we have |λi|< |λ1| for each i≥ 2, so each of the numbers (λi/λ1)
k

become small in absolute value as k increases. Hence vk is approximately equal to the first term λ k
1 b1x1,

and we write this as vk ≈ λ k
1 b1x1. These observations are summarized in the following theorem (together

with the above exact formula for vk).

Theorem 3.3.7

Consider the dynamical system v0, v1, v2, . . . with matrix recurrence

vk+1 = Avk for k ≥ 0

where A and v0 are given. Assume that A is a diagonalizable n×n matrix with eigenvalues
λ1, λ2, . . . , λn and corresponding basic eigenvectors x1, x2, . . . , xn, and let
P =

[
x1 x2 . . . xn

]
be the diagonalizing matrix. Then an exact formula for vk is

vk = b1λ k
1 x1 +b2λ k

2 x2 + · · ·+bnλ k
n xn for each k ≥ 0

where the coefficients bi come from

b = P−1v0 =




b1

b2
...

bn




Moreover, if A has dominant12eigenvalue λ1, then vk is approximated by

vk = b1λ k
1 x1 for sufficiently large k.

12Similar results can be found in other situations. If for example, eigenvalues λ1 and λ2 (possibly equal) satisfy |λ1|= |λ2|>
|λi| for all i > 2, then we obtain vk ≈ b1λ k

1 x1 + b2λ k
2 x2 for large k.
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Example 3.3.13

Returning to Example 3.3.12, we see that λ1 = 1 is the dominant eigenvalue, with eigenvector

x1 =

[
1
2

]
. Here P =

[
1 −1
2 4

]
and v0 =

[
100
40

]
so P−1v0 =

1
3

[
220
−80

]
. Hence b1 =

220
3 in

the notation of Theorem 3.3.7, so
[

ak

jk

]
= vk ≈ b1λ k

1 x1 =
220

3 1k

[
1
2

]

where k is large. Hence ak ≈ 220
3 and jk ≈ 440

3 as in Example 3.3.12.

This next example uses Theorem 3.3.7 to solve a “linear recurrence.” See also Section 3.4.

Example 3.3.14

Suppose a sequence x0, x1, x2, . . . is determined by insisting that

x0 = 1, x1 =−1, and xk+2 = 2xk− xk+1 for every k ≥ 0

Find a formula for xk in terms of k.

Solution. Using the linear recurrence xk+2 = 2xk− xk+1 repeatedly gives

x2 = 2x0− x1 = 3, x3 = 2x1− x2 =−5, x4 = 11, x5 =−21, . . .

so the xi are determined but no pattern is apparent. The idea is to find vk =

[
xk

xk+1

]
for each k

instead, and then retrieve xk as the top component of vk. The reason this works is that the linear
recurrence guarantees that these vk are a dynamical system:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

2xk− xk+1

]
= Avk where A =

[
0 1
2 −1

]

The eigenvalues of A are λ1 =−2 and λ2 = 1 with eigenvectors x1 =

[
1
−2

]
and x2 =

[
1
1

]
, so

the diagonalizing matrix is P =

[
1 1
−2 1

]
.

Moreover, b = P−1
0 v0 =

1
3

[
2
1

]
so the exact formula for vk is

[
xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

2
3(−2)k

[
1
−2

]
+ 1

31k

[
1
1

]

Equating top entries gives the desired formula for xk:

xk =
1
3

[
2(−2)k +1

]
for all k = 0, 1, 2, . . .

The reader should check this for the first few values of k.
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Graphical Description of Dynamical Systems

If a dynamical system vk+1 = Avk is given, the sequence v0, v1, v2, . . . is called the trajectory of the

system starting at v0. It is instructive to obtain a graphical plot of the system by writing vk =

[
xk

yk

]
and

plotting the successive values as points in the plane, identifying vk with the point (xk, yk) in the plane. We
give several examples which illustrate properties of dynamical systems. For ease of calculation we assume
that the matrix A is simple, usually diagonal.

Example 3.3.15

O
x

y

Let A =

[ 1
2 0
0 1

3

]
Then the eigenvalues are 1

2 and 1
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
.

The exact formula is

vk = b1
(1

2

)k
[

1
0

]
+b2

(1
3

)k
[

0
1

]

for k = 0, 1, 2, . . . by Theorem 3.3.7, where the coefficients
b1 and b2 depend on the initial point v0. Several trajectories are
plotted in the diagram and, for each choice of v0, the trajectories
converge toward the origin because both eigenvalues are less
than 1 in absolute value. For this reason, the origin is called
an attractor for the system.

Example 3.3.16

O
x

y

Let A =

[ 3
2 0
0 4

3

]
. Here the eigenvalues are 3

2 and 4
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
as before.

The exact formula is

vk = b1
(3

2

)k
[

1
0

]
+b2

(4
3

)k
[

0
1

]

for k = 0, 1, 2, . . . . Since both eigenvalues are greater than
1 in absolute value, the trajectories diverge away from the origin
for every choice of initial point V0. For this reason, the origin
is called a repellor for the system.
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Example 3.3.17

O
x

y

Let A =

[
1 −1

2
−1

2 1

]
. Now the eigenvalues are 3

2 and 1
2 , with

corresponding eigenvectors x1 =

[
−1

1

]
and x2 =

[
1
1

]
The

exact formula is

vk = b1
(3

2

)k
[
−1

1

]
+b2

(1
2

)k
[

1
1

]

for k = 0, 1, 2, . . . . In this case 3
2 is the dominant eigenvalue

so, if b1 6= 0, we have vk ≈ b1
(

3
2

)k
[
−1

1

]
for large k and vk

is approaching the line y =−x.

However, if b1 = 0, then vk = b2
(1

2

)k
[

1
1

]
and so approaches

the origin along the line y = x. In general the trajectories appear
as in the diagram, and the origin is called a saddle point for the

dynamical system in this case.

Example 3.3.18

Let A =

[
0 1

2
−1

2 0

]
. Now the characteristic polynomial is cA(x) = x2 + 1

4 , so the eigenvalues are

the complex numbers i
2 and − i

2 where i2 =−1. Hence A is not diagonalizable as a real matrix.

However, the trajectories are not difficult to describe. If we start with v0 =

[
1
1

]
then the

trajectory begins as

v1 =

[
1
2

−1
2

]
, v2 =

[
−1

4

−1
4

]
, v3 =

[
−1

8
1
8

]
, v4 =

[
1

16
1

16

]
, v5 =

[
1

32

− 1
32

]
, v6 =

[
− 1

64

− 1
64

]
, . . .

1

1 v0

v1

v2

v3

O
x

y

The first five of these points are plotted in the diagram. Here
each trajectory spirals in toward the origin, so the origin is an
attractor. Note that the two (complex) eigenvalues have absolute
value less than 1 here. If they had absolute value greater than
1, the trajectories would spiral out from the origin.
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Google PageRank

Dominant eigenvalues are useful to the Google search engine for finding information on the Web. If an
information query comes in from a client, Google has a sophisticated method of establishing the “rele-
vance” of each site to that query. When the relevant sites have been determined, they are placed in order of
importance using a ranking of all sites called the PageRank. The relevant sites with the highest PageRank
are the ones presented to the client. It is the construction of the PageRank that is our interest here.

The Web contains many links from one site to another. Google interprets a link from site j to site
i as a “vote” for the importance of site i. Hence if site i has more links to it than does site j, then i is
regarded as more “important” and assigned a higher PageRank. One way to look at this is to view the sites
as vertices in a huge directed graph (see Section 2.2). Then if site j links to site i there is an edge from j

to i, and hence the (i, j)-entry is a 1 in the associated adjacency matrix (called the connectivity matrix in
this context). Thus a large number of 1s in row i of this matrix is a measure of the PageRank of site i.13

However this does not take into account the PageRank of the sites that link to i. Intuitively, the higher
the rank of these sites, the higher the rank of site i. One approach is to compute a dominant eigenvector x

for the connectivity matrix. In most cases the entries of x can be chosen to be positive with sum 1. Each
site corresponds to an entry of x, so the sum of the entries of sites linking to a given site i is a measure of
the rank of site i. In fact, Google chooses the PageRank of a site so that it is proportional to this sum.14

Exercises for 3.3

Exercise 3.3.1 In each case find the characteristic poly-
nomial, eigenvalues, eigenvectors, and (if possible) an in-
vertible matrix P such that P−1AP is diagonal.

A =

[
1 2
3 2

]
a. A =

[
2 −4
−1 −1

]
b.

A =




7 0 −4
0 5 0
5 0 −2


c. A=




1 1 −3
2 0 6
1 −1 5


d.

A=




1 −2 3
2 6 −6
1 2 −1


e. A =




0 1 0
3 0 1
2 0 0


f.

A=




3 1 1
−4 −2 −5

2 2 5


g. A =




2 1 1
0 1 0
1 −1 2


h.

A =




λ 0 0
0 λ 0
0 0 µ


, λ 6= µi.

Exercise 3.3.2 Consider a linear dynamical system
vk+1 = Avk for k ≥ 0. In each case approximate vk us-
ing Theorem 3.3.7.

a. A =

[
2 1
4 −1

]
, v0 =

[
1
2

]

b. A =

[
3 −2
2 −2

]
, v0 =

[
3
−1

]

c. A =




1 0 0
1 2 3
1 4 1


 , v0 =




1
1
1




13For more on PageRank, visit https://en.wikipedia.org/wiki/PageRank.
14See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages 101–103,

and “The worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7 billion” by Cleve
Moler, Matlab News and Notes, October 2002, pages 12–13.

https://en.wikipedia.org/wiki/PageRank
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d. A =




1 3 2
−1 2 1

4 −1 −1


 , v0 =




2
0
1




Exercise 3.3.3 Show that A has λ = 0 as an eigenvalue
if and only if A is not invertible.

Exercise 3.3.4 Let A denote an n× n matrix and put
A1 = A−αI, α in R. Show that λ is an eigenvalue of
A if and only if λ −α is an eigenvalue of A1. (Hence,
the eigenvalues of A1 are just those of A “shifted” by α .)
How do the eigenvectors compare?

Exercise 3.3.5 Show that the eigenvalues of[
cos θ −sinθ

sinθ cos θ

]
are eiθ and e−iθ .

(See Appendix A)

Exercise 3.3.6 Find the characteristic polynomial of the
n×n identity matrix I. Show that I has exactly one eigen-
value and find the eigenvectors.

Exercise 3.3.7 Given A =

[
a b

c d

]
show that:

a. cA(x) = x2− tr Ax+ det A, where tr A = a+ d is
called the trace of A.

b. The eigenvalues are 1
2

[
(a+d)±

√
(a−b)2 +4bc

]
.

Exercise 3.3.8 In each case, find P−1AP and then com-
pute An.

a. A =

[
6 −5
2 −1

]
, P =

[
1 5
1 2

]

b. A =

[
−7 −12

6 −10

]
, P =

[
−3 4

2 −3

]

[Hint: (PDP−1)n = PDnP−1 for each n =
1, 2, . . . .]

Exercise 3.3.9

a. If A =

[
1 3
0 2

]
and B =

[
2 0
0 1

]
verify that A

and B are diagonalizable, but AB is not.

b. If D =

[
1 0
0 −1

]
find a diagonalizable matrix A

such that D+A is not diagonalizable.

Exercise 3.3.10 If A is an n× n matrix, show that A is
diagonalizable if and only if AT is diagonalizable.

Exercise 3.3.11 If A is diagonalizable, show that each
of the following is also diagonalizable.

a. An, n≥ 1

b. kA, k any scalar.

c. p(A), p(x) any polynomial (Theorem 3.3.1)

d. U−1AU for any invertible matrix U .

e. kI +A for any scalar k.

Exercise 3.3.12 Give an example of two diagonalizable
matrices A and B whose sum A+B is not diagonalizable.

Exercise 3.3.13 If A is diagonalizable and 1 and −1 are
the only eigenvalues, show that A−1 = A.

Exercise 3.3.14 If A is diagonalizable and 0 and 1 are
the only eigenvalues, show that A2 = A.

Exercise 3.3.15 If A is diagonalizable and λ ≥ 0 for
each eigenvalue of A, show that A = B2 for some matrix
B.

Exercise 3.3.16 If P−1AP and P−1BP are both diago-
nal, show that AB = BA. [Hint: Diagonal matrices com-
mute.]

Exercise 3.3.17 A square matrix A is called nilpotent if
An = 0 for some n≥ 1. Find all nilpotent diagonalizable
matrices. [Hint: Theorem 3.3.1.]

Exercise 3.3.18 Let A be any n× n matrix and r 6= 0 a
real number.

a. Show that the eigenvalues of rA are precisely the
numbers rλ , where λ is an eigenvalue of A.

b. Show that crA(x) = rncA

(
x
r

)
.

Exercise 3.3.19

a. If all rows of A have the same sum s, show that s

is an eigenvalue.

b. If all columns of A have the same sum s, show that
s is an eigenvalue.

Exercise 3.3.20 Let A be an invertible n×n matrix.

a. Show that the eigenvalues of A are nonzero.
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b. Show that the eigenvalues of A−1 are precisely the
numbers 1/λ , where λ is an eigenvalue of A.

c. Show that cA−1(x) =
(−x)n

det A
cA

(
1
x

)
.

Exercise 3.3.21 Suppose λ is an eigenvalue of a square
matrix A with eigenvector x 6= 0.

a. Show that λ 2 is an eigenvalue of A2 (with the same
x).

b. Show that λ 3−2λ +3 is an eigenvalue of
A3−2A+3I.

c. Show that p(λ ) is an eigenvalue of p(A) for any
nonzero polynomial p(x).

Exercise 3.3.22 If A is an n× n matrix, show that
cA2(x2) = (−1)ncA(x)cA(−x).

Exercise 3.3.23 An n×n matrix A is called nilpotent if
Am = 0 for some m≥ 1.

a. Show that every triangular matrix with zeros on
the main diagonal is nilpotent.

b. If A is nilpotent, show that λ = 0 is the only eigen-
value (even complex) of A.

c. Deduce that cA(x) = xn, if A is n×n and nilpotent.

Exercise 3.3.24 Let A be diagonalizable with real eigen-
values and assume that Am = I for some m≥ 1.

a. Show that A2 = I.

b. If m is odd, show that A = I.

[Hint: Theorem A.3]

Exercise 3.3.25 Let A2 = I, and assume that A 6= I and
A 6=−I.

a. Show that the only eigenvalues of A are λ = 1 and
λ =−1.

b. Show that A is diagonalizable. [Hint: Verify that
A(A+I)=A+I and A(A−I)=−(A−I), and then
look at nonzero columns of A+ I and of A− I.]

c. If Qm : R2 → R2 is reflection in the line y = mx

where m 6= 0, use (b) to show that the matrix of
Qm is diagonalizable for each m.

d. Now prove (c) geometrically using Theorem 3.3.3.

Exercise 3.3.26 Let A =




2 3 −3
1 0 −1
1 1 −2


 and B =




0 1 0
3 0 1
2 0 0


. Show that cA(x) = cB(x) = (x+ 1)2(x−

2), but A is diagonalizable and B is not.

Exercise 3.3.27

a. Show that the only diagonalizable matrix A that
has only one eigenvalue λ is the scalar matrix
A = λ I.

b. Is

[
3 −2
2 −1

]
diagonalizable?

Exercise 3.3.28 Characterize the diagonalizable n× n

matrices A such that A2− 3A+ 2I = 0 in terms of their
eigenvalues. [Hint: Theorem 3.3.1.]

Exercise 3.3.29 Let A =

[
B 0
0 C

]
where B and C are

square matrices.

a. If B and C are diagonalizable via Q and R (that is,
Q−1BQ and R−1CR are diagonal), show that A is

diagonalizable via

[
Q 0
0 R

]

b. Use (a) to diagonalize A if B =

[
5 3
3 5

]
and

C =

[
7 −1
−1 7

]
.
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Exercise 3.3.30 Let A =

[
B 0
0 C

]
where B and C are

square matrices.

a. Show that cA(x) = cB(x)cC(x).

b. If x and y are eigenvectors of B and C, respec-

tively, show that

[
x

0

]
and

[
0
y

]
are eigenvec-

tors of A, and show how every eigenvector of A

arises from such eigenvectors.

Exercise 3.3.31 Referring to the model in Exam-
ple 3.3.1, determine if the population stabilizes, becomes
extinct, or becomes large in each case. Denote the adult
and juvenile survival rates as A and J, and the reproduc-
tion rate as R.

R A J

a. 2 1
2

1
2

b. 3 1
4

1
4

c. 2 1
4

1
3

d. 3 3
5

1
5

Exercise 3.3.32 In the model of Example 3.3.1, does the
final outcome depend on the initial population of adult
and juvenile females? Support your answer.

Exercise 3.3.33 In Example 3.3.1, keep the same repro-
duction rate of 2 and the same adult survival rate of 1

2 ,
but suppose that the juvenile survival rate is ρ . Deter-
mine which values of ρ cause the population to become
extinct or to become large.

Exercise 3.3.34 In Example 3.3.1, let the juvenile sur-
vival rate be 2

5 and let the reproduction rate be 2. What
values of the adult survival rate α will ensure that the
population stabilizes?

3.4 An Application to Linear Recurrences

It often happens that a problem can be solved by finding a sequence of numbers x0, x1, x2, . . . where the
first few are known, and subsequent numbers are given in terms of earlier ones. Here is a combinatorial
example where the object is to count the number of ways to do something.

Example 3.4.1

An urban planner wants to determine the number xk of ways that a row of k parking spaces can be
filled with cars and trucks if trucks take up two spaces each. Find the first few values of xk.

Solution. Clearly, x0 = 1 and x1 = 1, while x2 = 2 since there can be two cars or one truck. We
have x3 = 3 (the 3 configurations are ccc, cT, and Tc) and x4 = 5 (cccc, ccT, cTc, Tcc, and TT). The
key to this method is to find a way to express each subsequent xk in terms of earlier values. In this
case we claim that

xk+2 = xk + xk+1 for every k ≥ 0 (3.11)

Indeed, every way to fill k+2 spaces falls into one of two categories: Either a car is parked in the
first space (and the remaining k+1 spaces are filled in xk+1 ways), or a truck is parked in the first
two spaces (with the other k spaces filled in xk ways). Hence, there are xk+1 + xk ways to fill the
k+2 spaces. This is Equation 3.11.
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The recurrence in Equation 3.11 determines xk for every k ≥ 2 since x0 and x1 are given. In fact,
the first few values are

x0 = 1
x1 = 1
x2 = x0 + x1 = 2
x3 = x1 + x2 = 3
x4 = x2 + x3 = 5
x5 = x3 + x4 = 8
...

...
...

Clearly, we can find xk for any value of k, but one wishes for a “formula” for xk as a function of k.
It turns out that such a formula can be found using diagonalization. We will return to this example
later.

A sequence x0, x1, x2, . . . of numbers is said to be given recursively if each number in the sequence is
completely determined by those that come before it. Such sequences arise frequently in mathematics and
computer science, and also occur in other parts of science. The formula xk+2 = xk+1+xk in Example 3.4.1
is an example of a linear recurrence relation of length 2 because xk+2 is the sum of the two preceding
terms xk+1 and xk; in general, the length is m if xk+m is a sum of multiples of xk, xk+1, . . . , xk+m−1.

The simplest linear recursive sequences are of length 1, that is xk+1 is a fixed multiple of xk for each k,
say xk+1 = axk. If x0 is specified, then x1 = ax0, x2 = ax1 = a2x0, and x3 = ax2 = a3x0, . . . . Continuing,
we obtain xk = akx0 for each k≥ 0, which is an explicit formula for xk as a function of k (when x0 is given).

Such formulas are not always so easy to find for all choices of the initial values. Here is an example
where diagonalization helps.

Example 3.4.2

Suppose the numbers x0, x1, x2, . . . are given by the linear recurrence relation

xk+2 = xk+1 +6xk for k ≥ 0

where x0 and x1 are specified. Find a formula for xk when x0 = 1 and x1 = 3, and also when x0 = 1
and x1 = 1.

Solution. If x0 = 1 and x1 = 3, then

x2 = x1 +6x0 = 9, x3 = x2 +6x1 = 27, x4 = x3 +6x2 = 81

and it is apparent that
xk = 3k for k = 0, 1, 2, 3, and 4

This formula holds for all k because it is true for k = 0 and k = 1, and it satisfies the recurrence
xk+2 = xk+1 +6xk for each k as is readily checked.
However, if we begin instead with x0 = 1 and x1 = 1, the sequence continues

x2 = 7, x3 = 13, x4 = 55, x5 = 133, . . .

In this case, the sequence is uniquely determined but no formula is apparent. Nonetheless, a simple
device transforms the recurrence into a matrix recurrence to which our diagonalization techniques
apply.
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The idea is to compute the sequence v0, v1, v2, . . . of columns instead of the numbers
x0, x1, x2, . . . , where

vk =

[
xk

xk+1

]
for each k ≥ 0

Then v0 =

[
x0

x1

]
=

[
1
1

]
is specified, and the numerical recurrence xk+2 = xk+1 +6xk transforms

into a matrix recurrence as follows:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

6xk + xk+1

]
=

[
0 1
6 1

][
xk

xk+1

]
= Avk

where A =

[
0 1
6 1

]
. Thus these columns vk are a linear dynamical system, so Theorem 3.3.7

applies provided the matrix A is diagonalizable.
We have cA(x) = (x−3)(x+2) so the eigenvalues are λ1 = 3 and λ2 =−2 with corresponding

eigenvectors x1 =

[
1
3

]
and x2 =

[
−1

2

]
as the reader can check. Since

P =
[

x1 x2
]
=

[
1 −1
3 2

]
is invertible, it is a diagonalizing matrix for A. The coefficients bi in

Theorem 3.3.7 are given by

[
b1

b2

]
= P−1v0 =

[
3
5
−2
5

]
, so that the theorem gives

[
xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

3
53k

[
1
3

]
+ −2

5 (−2)k

[
−1

2

]

Equating top entries yields

xk =
1
5

[
3k+1− (−2)k+1

]
for k ≥ 0

This gives x0 = 1 = x1, and it satisfies the recurrence xk+2 = xk+1 +6xk as is easily verified.
Hence, it is the desired formula for the xk.

Returning to Example 3.4.1, these methods give an exact formula and a good approximation for the num-
bers xk in that problem.

Example 3.4.3

In Example 3.4.1, an urban planner wants to determine xk, the number of ways that a row of k

parking spaces can be filled with cars and trucks if trucks take up two spaces each. Find a formula
for xk and estimate it for large k.

Solution. We saw in Example 3.4.1 that the numbers xk satisfy a linear recurrence

xk+2 = xk + xk+1 for every k ≥ 0
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If we write vk =

[
xk

xk+1

]
as before, this recurrence becomes a matrix recurrence for the vk:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

xk + xk+1

]
=

[
0 1
1 1

][
xk

xk+1

]
= Avk

for all k ≥ 0 where A =

[
0 1
1 1

]
. Moreover, A is diagonalizable here. The characteristic

polynomial is cA(x) = x2− x−1 with roots 1
2

[
1±
√

5
]

by the quadratic formula, so A has

eigenvalues

λ1 =
1
2

(
1+
√

5
)

and λ2 =
1
2

(
1−
√

5
)

Corresponding eigenvectors are x1 =

[
1
λ1

]
and x2 =

[
1
λ2

]
respectively as the reader can verify.

As the matrix P =
[

x1 x2
]
=

[
1 1
λ1 λ2

]
is invertible, it is a diagonalizing matrix for A. We

compute the coefficients b1 and b2 (in Theorem 3.3.7) as follows:
[

b1

b2

]
= P−1v0 =

1
−
√

5

[
λ2 −1
−λ1 1

][
1
1

]
= 1√

5

[
λ1

−λ2

]

where we used the fact that λ1 +λ2 = 1. Thus Theorem 3.3.7 gives
[

xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

λ1√
5
λ k

1

[
1
λ1

]
− λ2√

5
λ k

2

[
1
λ2

]

Comparing top entries gives an exact formula for the numbers xk:

xk =
1√
5

[
λ k+1

1 −λ k+1
2

]
for k ≥ 0

Finally, observe that λ1 is dominant here (in fact, λ1 = 1.618 and λ2 =−0.618 to three decimal
places) so λ k+1

2 is negligible compared with λ k+1
1 is large. Thus,

xk ≈ 1√
5
λ k+1

1 for each k ≥ 0.

This is a good approximation, even for as small a value as k = 12. Indeed, repeated use of the
recurrence xk+2 = xk + xk+1 gives the exact value x12 = 233, while the approximation is

x12 ≈ (1.618)13
√

5
= 232.94.

The sequence x0, x1, x2, . . . in Example 3.4.3 was first discussed in 1202 by Leonardo Pisano of Pisa,
also known as Fibonacci,15 and is now called the Fibonacci sequence. It is completely determined by
the conditions x0 = 1, x1 = 1 and the recurrence xk+2 = xk + xk+1 for each k ≥ 0. These numbers have

15Fibonacci was born in Italy. As a young man he travelled to India where he encountered the “Fibonacci” sequence. He
returned to Italy and published this in his book Liber Abaci in 1202. In the book he is the first to bring the Hindu decimal
system for representing numbers to Europe.
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been studied for centuries and have many interesting properties (there is even a journal, the Fibonacci

Quarterly, devoted exclusively to them). For example, biologists have discovered that the arrangement of

leaves around the stems of some plants follow a Fibonacci pattern. The formula xk =
1√
5

[
λ k+1

1 −λ k+1
2

]

in Example 3.4.3 is called the Binet formula. It is remarkable in that the xk are integers but λ1 and λ2 are
not. This phenomenon can occur even if the eigenvalues λi are nonreal complex numbers.

We conclude with an example showing that nonlinear recurrences can be very complicated.

Example 3.4.4

Suppose a sequence x0, x1, x2, . . . satisfies the following recurrence:

xk+1 =

{
1
2xk if xk is even
3xk +1 if xk is odd

If x0 = 1, the sequence is 1, 4, 2, 1, 4, 2, 1, . . . and so continues to cycle indefinitely. The same
thing happens if x0 = 7. Then the sequence is

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, . . .

and it again cycles. However, it is not known whether every choice of x0 will lead eventually to 1.
It is quite possible that, for some x0, the sequence will continue to produce different values
indefinitely, or will repeat a value and cycle without reaching 1. No one knows for sure.

Exercises for 3.4

Exercise 3.4.1 Solve the following linear recurrences.

a. xk+2 = 3xk +2xk+1, where x0 = 1 and x1 = 1.

b. xk+2 = 2xk− xk+1, where x0 = 1 and x1 = 2.

c. xk+2 = 2xk + xk+1, where x0 = 0 and x1 = 1.

d. xk+2 = 6xk− xk+1, where x0 = 1 and x1 = 1.

Exercise 3.4.2 Solve the following linear recurrences.

a. xk+3 = 6xk+2−11xk+1+6xk, where x0 = 1, x1 = 0,
and x2 = 1.

b. xk+3 =−2xk+2 +xk+1+2xk, where x0 = 1, x1 = 0,
and x2 = 1.

[Hint: Use vk =




xk

xk+1

xk+2


.]

Exercise 3.4.3 In Example 3.4.1 suppose buses are also
allowed to park, and let xk denote the number of ways a
row of k parking spaces can be filled with cars, trucks,
and buses.

a. If trucks and buses take up 2 and 3 spaces respec-
tively, show that xk+3 = xk + xk+1 + xk+2 for each
k, and use this recurrence to compute x10. [Hint:
The eigenvalues are of little use.]

b. If buses take up 4 spaces, find a recurrence for the
xk and compute x10.
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Exercise 3.4.4 A man must climb a flight of k steps.
He always takes one or two steps at a time. Thus he can
climb 3 steps in the following ways: 1, 1, 1; 1, 2; or 2, 1.
Find sk, the number of ways he can climb the flight of k

steps. [Hint: Fibonacci.]

Exercise 3.4.5 How many “words” of k letters can be
made from the letters {a, b} if there are no adjacent a’s?

Exercise 3.4.6 How many sequences of k flips of a coin
are there with no HH?

Exercise 3.4.7 Find xk, the number of ways to make
a stack of k poker chips if only red, blue, and gold chips
are used and no two gold chips are adjacent. [Hint: Show
that xk+2 = 2xk+1 +2xk by considering how many stacks
have a red, blue, or gold chip on top.]

Exercise 3.4.8 A nuclear reactor contains α- and β -
particles. In every second each α-particle splits into three
β -particles, and each β -particle splits into an α-particle
and two β -particles. If there is a single α-particle in the
reactor at time t = 0, how many α-particles are there at
t = 20 seconds? [Hint: Let xk and yk denote the number
of α- and β -particles at time t = k seconds. Find xk+1

and yk+1 in terms of xk and yk.]

Exercise 3.4.9 The annual yield of wheat in a certain
country has been found to equal the average of the yield
in the previous two years. If the yields in 1990 and 1991
were 10 and 12 million tons respectively, find a formula
for the yield k years after 1990. What is the long-term
average yield?

Exercise 3.4.10 Find the general solution to the recur-
rence xk+1 = rxk + c where r and c are constants. [Hint:
Consider the cases r = 1 and r 6= 1 separately. If r 6= 1,
you will need the identity 1+ r+ r2 + · · ·+ rn−1 = 1−rn

1−r

for n≥ 1.]

Exercise 3.4.11 Consider the length 3 recurrence
xk+3 = axk +bxk+1 + cxk+2.

a. If vk =




xk

xk+1

xk+2


 and A=




0 1 0
0 0 1
a b c


 show that

vk+1 = Avk.

b. If λ is any eigenvalue of A, show that x =




1
λ

λ 2




is a λ -eigenvector.

[Hint: Show directly that Ax = λx.]

c. Generalize (a) and (b) to a recurrence

xk+4 = axk +bxk+1 + cxk+2 +dxk+3

of length 4.

Exercise 3.4.12 Consider the recurrence

xk+2 = axk+1 +bxk + c

where c may not be zero.

a. If a+ b 6= 1 show that p can be found such that,
if we set yk = xk + p, then yk+2 = ayk+1 + byk.
[Hence, the sequence xk can be found provided yk

can be found by the methods of this section (or
otherwise).]

b. Use (a) to solve xk+2 = xk+1+6xk+5 where x0 = 1
and x1 = 1.

Exercise 3.4.13 Consider the recurrence

xk+2 = axk+1 +bxk + c(k) (3.12)

where c(k) is a function of k, and consider the related
recurrence

xk+2 = axk+1 +bxk (3.13)

Suppose that xk = pk is a particular solution of Equation
3.12.

a. If qk is any solution of Equation 3.13, show that
qk + pk is a solution of Equation 3.12.

b. Show that every solution of Equation 3.12 arises
as in (a) as the sum of a solution of Equation 3.13
plus the particular solution pk of Equation 3.12.
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3.5 An Application to Systems of Differential Equations

A function f of a real variable is said to be differentiable if its derivative exists and, in this case, we let f ′

denote the derivative. If f and g are differentiable functions, a system

f ′ = 3 f +5g

g′ =− f +2g

is called a system of first order differential equations, or a differential system for short. Solving many
practical problems often comes down to finding sets of functions that satisfy such a system (often in-
volving more than two functions). In this section we show how diagonalization can help. Of course an
acquaintance with calculus is required.

The Exponential Function

The simplest differential system is the following single equation:

f ′ = a f where a is constant (3.14)

It is easily verified that f (x) = eax is one solution; in fact, Equation 3.14 is simple enough for us to find
all solutions. Suppose that f is any solution, so that f ′(x) = a f (x) for all x. Consider the new function g

given by g(x) = f (x)e−ax. Then the product rule of differentiation gives

g′(x) = f (x)
[
−ae−ax

]
+ f ′(x)e−ax

=−a f (x)e−ax +[a f (x)]e−ax

= 0

for all x. Hence the function g(x) has zero derivative and so must be a constant, say g(x) = c. Thus
c = g(x) = f (x)e−ax, that is

f (x) = ceax

In other words, every solution f (x) of Equation 3.14 is just a scalar multiple of eax. Since every such
scalar multiple is easily seen to be a solution of Equation 3.14, we have proved

Theorem 3.5.1

The set of solutions to f ′ = a f is {ceax | c any constant}= Reax.

Remarkably, this result together with diagonalization enables us to solve a wide variety of differential
systems.
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Example 3.5.1

Assume that the number n(t) of bacteria in a culture at time t has the property that the rate of
change of n is proportional to n itself. If there are n0 bacteria present when t = 0, find the number
at time t.

Solution. Let k denote the proportionality constant. The rate of change of n(t) is its time-derivative
n′(t), so the given relationship is n′(t) = kn(t). Thus Theorem 3.5.1 shows that all solutions n are
given by n(t) = cekt , where c is a constant. In this case, the constant c is determined by the
requirement that there be n0 bacteria present when t = 0. Hence n0 = n(0) = cek0 = c, so

n(t) = n0ekt

gives the number at time t. Of course the constant k depends on the strain of bacteria.

The condition that n(0) = n0 in Example 3.5.1 is called an initial condition or a boundary condition

and serves to select one solution from the available solutions.

General Differential Systems

Solving a variety of problems, particularly in science and engineering, comes down to solving a system
of linear differential equations. Diagonalization enters into this as follows. The general problem is to find
differentiable functions f1, f2, . . . , fn that satisfy a system of equations of the form

f ′1 = a11 f1 + a12 f2 + · · ·+ a1n fn

f ′2 = a21 f1 + a22 f2 + · · ·+ a2n fn
...

...
...

...
f ′n = an1 f1 + an2 f2 + · · ·+ ann fn

where the ai j are constants. This is called a linear system of differential equations or simply a differen-

tial system. The first step is to put it in matrix form. Write

f =




f1

f2
...
fn


 f′ =




f ′1
f ′2
...
f ′n


 A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




Then the system can be written compactly using matrix multiplication:

f′ = Af

Hence, given the matrix A, the problem is to find a column f of differentiable functions that satisfies this
condition. This can be done if A is diagonalizable. Here is an example.



200 Determinants and Diagonalization

Example 3.5.2

Find a solution to the system
f ′1 = f1 +3 f2

f ′2 = 2 f1 +2 f2

that satisfies f1(0) = 0, f2(0) = 5.

Solution. This is f′ = Af, where f =

[
f1

f2

]
and A =

[
1 3
2 2

]
. The reader can verify that

cA(x) = (x−4)(x+1), and that x1 =

[
1
1

]
and x2 =

[
3
−2

]
are eigenvectors corresponding to

the eigenvalues 4 and −1, respectively. Hence the diagonalization algorithm gives

P−1AP =

[
4 0
0 −1

]
, where P =

[
x1 x2

]
=

[
1 3
1 −2

]
. Now consider new functions g1 and g2

given by f = Pg (equivalently, g = P−1f ), where g =

[
g1

g2

]
Then

[
f1

f2

]
=

[
1 3
1 −2

][
g1

g2

]
that is,

f1 = g1 +3g2

f2 = g1−2g2

Hence f ′1 = g′1 +3g′2 and f ′2 = g′1−2g′2 so that

f′ =

[
f ′1
f ′2

]
=

[
1 3
1 −2

][
g′1
g′2

]
= Pg′

If this is substituted in f′ = Af, the result is Pg′ = APg, whence

g′ = P−1APg

But this means that [
g′1
g′2

]
=

[
4 0
0 −1

][
g1

g2

]
, so

g′1 = 4g1

g′2 =−g2

Hence Theorem 3.5.1 gives g1(x) = ce4x, g2(x) = de−x, where c and d are constants. Finally, then,
[

f1(x)
f2(x)

]
= P

[
g1(x)
g2(x)

]
=

[
1 3
1 −2

][
ce4x

de−x

]
=

[
ce4x +3de−x

ce4x−2de−x

]

so the general solution is

f1(x) = ce4x +3de−x

f2(x) = ce4x−2de−x c and d constants

It is worth observing that this can be written in matrix form as
[

f1(x)
f2(x)

]
= c

[
1
1

]
e4x +d

[
3
−2

]
e−x

That is,
f(x) = cx1e4x +dx2e−x
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This form of the solution works more generally, as will be shown.
Finally, the requirement that f1(0) = 0 and f2(0) = 5 in this example determines the constants c

and d:

0 = f1(0) = ce0 +3de0 = c+3d

5 = f2(0) = ce0−2de0 = c−2d

These equations give c = 3 and d =−1, so

f1(x) = 3e4x−3e−x

f2(x) = 3e4x +2e−x

satisfy all the requirements.

The technique in this example works in general.

Theorem 3.5.2

Consider a linear system
f′ = Af

of differential equations, where A is an n×n diagonalizable matrix. Let P−1AP be diagonal, where
P is given in terms of its columns

P = [x1, x2, · · · , xn]

and {x1, x2, . . . , xn} are eigenvectors of A. If xi corresponds to the eigenvalue λi for each i, then
every solution f of f′ = Af has the form

f(x) = c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

where c1, c2, . . . , cn are arbitrary constants.

Proof. By Theorem 3.3.4, the matrix P =
[

x1 x2 . . . xn

]
is invertible and

P−1AP =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn




As in Example 3.5.2, write f =




f1

f2
...
fn


 and define g =




g1

g2
...

gn


 by g = P−1f; equivalently, f = Pg. If

P =
[
pi j

]
, this gives

fi = pi1g1 + pi2g2 + · · ·+ pingn
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Since the pi j are constants, differentiation preserves this relationship:

f ′i = pi1g′1 + pi2g′2 + · · ·+ ping′n

so f′ = Pg′. Substituting this into f′ = Af gives Pg′ = APg. But then left multiplication by P−1 gives
g′ = P−1APg, so the original system of equations f′ = Af for f becomes much simpler in terms of g:




g′1
g′2
...

g′n


=




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn







g1

g2
...

gn




Hence g′i = λigi holds for each i, and Theorem 3.5.1 implies that the only solutions are

gi(x) = cie
λix ci some constant

Then the relationship f = Pg gives the functions f1, f2, . . . , fn as follows:

f(x) = [x1, x2, · · · , xn]




c1eλ1x

c2eλ2x

...
cneλnx


= c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

This is what we wanted.

The theorem shows that every solution to f′ = Af is a linear combination

f(x) = c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

where the coefficients ci are arbitrary. Hence this is called the general solution to the system of differential
equations. In most cases the solution functions fi(x) are required to satisfy boundary conditions, often of
the form fi(a)= bi, where a, b1, . . . , bn are prescribed numbers. These conditions determine the constants
ci. The following example illustrates this and displays a situation where one eigenvalue has multiplicity
greater than 1.

Example 3.5.3

Find the general solution to the system

f ′1 = 5 f1 + 8 f2 + 16 f3

f ′2 = 4 f1 + f2 + 8 f3

f ′3 =−4 f1− 4 f2− 11 f3

Then find a solution satisfying the boundary conditions f1(0) = f2(0) = f3(0) = 1.

Solution. The system has the form f′ = Af, where A =




5 8 16
4 1 8
−4 −4 −11


. In this case

cA(x) = (x+3)2(x−1) and eigenvectors corresponding to the eigenvalues −3, −3, and 1 are,
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respectively,

x1 =



−1

1
0


 x2 =



−2

0
1


 x3 =




2
1
−1




Hence, by Theorem 3.5.2, the general solution is

f(x) = c1



−1

1
0


e−3x + c2



−2

0
1


e−3x + c3




2
1
−1


ex, ci constants.

The boundary conditions f1(0) = f2(0) = f3(0) = 1 determine the constants ci.




1
1
1


= f(0) = c1



−1

1
0


+ c2



−2

0
1


+ c3




2
1
−1




=



−1 −2 2

1 0 1
0 1 −1






c1

c2

c3




The solution is c1 =−3, c2 = 5, c3 = 4, so the required specific solution is

f1(x) =−7e−3x + 8ex

f2(x) =−3e−3x + 4ex

f3(x) = 5e−3x− 4ex

Exercises for 3.5

Exercise 3.5.1 Use Theorem 3.5.1 to find the general
solution to each of the following systems. Then find a
specific solution satisfying the given boundary condition.

a. f ′1 = 2 f1 +4 f2, f1(0) = 0
f ′2 = 3 f1 +3 f2, f2(0) = 1

b. f ′1 =− f1 +5 f2, f1(0) = 1
f ′2 = f1 +3 f2, f2(0) =−1

c. f ′1 = 4 f2 +4 f3

f ′2 = f1 + f2−2 f3

f ′3 =− f1 + f2 +4 f3

f1(0) = f2(0) = f3(0) = 1

d. f ′1 = 2 f1+ f2+ 2 f3

f ′2 = 2 f1+ 2 f2− 2 f3

f ′3 = 3 f1+ f2+ f3

f1(0) = f2(0) = f3(0) = 1

Exercise 3.5.2 Show that the solution to f ′ = a f satis-
fying f (x0) = k is f (x) = kea(x−x0).

Exercise 3.5.3 A radioactive element decays at a rate
proportional to the amount present. Suppose an initial
mass of 10 g decays to 8 g in 3 hours.

a. Find the mass t hours later.

b. Find the half-life of the element—the time taken
to decay to half its mass.
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Exercise 3.5.4 The population N(t) of a region at time
t increases at a rate proportional to the population. If
the population doubles every 5 years and is 3 million ini-
tially, find N(t).

Exercise 3.5.5 Let A be an invertible diagonalizable
n× n matrix and let b be an n-column of constant func-
tions. We can solve the system f′ = Af+b as follows:

a. If g satisfies g′ = Ag (using Theorem 3.5.2), show
that f = g−A−1b is a solution to f′ = Af+b.

b. Show that every solution to f′ = Af+b arises as in
(a) for some solution g to g′ = Ag.

Exercise 3.5.6 Denote the second derivative of f by
f ′′ = ( f ′)′. Consider the second order differential equa-
tion

f ′′−a1 f ′−a2 f = 0, a1 and a2 real numbers (3.15)

a. If f is a solution to Equation 3.15 let f1 = f and
f2 = f ′−a1 f . Show that
{

f ′1 = a1 f1 + f2

f ′2 = a2 f1
,

that is

[
f ′1
f ′2

]
=

[
a1 1
a2 0

][
f1

f2

]

b. Conversely, if

[
f1

f2

]
is a solution to the system in

(a), show that f1 is a solution to Equation 3.15.

Exercise 3.5.7 Writing f ′′′ = ( f ′′)′, consider the third
order differential equation

f ′′′−a1 f ′′−a2 f ′−a3 f = 0

where a1, a2, and a3 are real numbers. Let
f1 = f , f2 = f ′−a1 f and f3 = f ′′−a1 f ′−a2 f ′′.

a. Show that




f1

f2

f3


 is a solution to the system





f ′1 = a1 f1 + f2

f ′2 = a2 f1 + f3

f ′3 = a3 f1

,

that is




f ′1
f ′2
f ′3


=




a1 1 0
a2 0 1
a3 0 0






f1

f2

f3




b. Show further that if




f1

f2

f3


 is any solution to this

system, then f = f1 is a solution to Equation 3.15.

Remark. A similar construction casts every linear differ-
ential equation of order n (with constant coefficients) as
an n×n linear system of first order equations. However,
the matrix need not be diagonalizable, so other methods
have been developed.

3.6 Proof of the Cofactor Expansion Theorem

Recall that our definition of the term determinant is inductive: The determinant of any 1× 1 matrix is
defined first; then it is used to define the determinants of 2× 2 matrices. Then that is used for the 3× 3
case, and so on. The case of a 1×1 matrix [a] poses no problem. We simply define

det [a] = a

as in Section 3.1. Given an n×n matrix A, define Ai j to be the (n−1)×(n−1) matrix obtained from A by
deleting row i and column j. Now assume that the determinant of any (n−1)× (n−1) matrix has been
defined. Then the determinant of A is defined to be

det A = a11 det A11−a21 det A21 + · · ·+(−1)n+1an1 det An1

=
n

∑
i=1

(−1)i+1ai1 det Ai1
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where summation notation has been introduced for convenience.16 Observe that, in the terminology of
Section 3.1, this is just the cofactor expansion of det A along the first column, and that (−1)i+ j det Ai j is
the (i, j)-cofactor (previously denoted as ci j(A)).17 To illustrate the definition, consider the 2×2 matrix

A =

[
a11 a12

a21 a22

]
. Then the definition gives

det

[
a11 a12

a21 a22

]
= a11 det [a22]−a21 det [a12] = a11a22−a21a12

and this is the same as the definition in Section 3.1.

Of course, the task now is to use this definition to prove that the cofactor expansion along any row
or column yields det A (this is Theorem 3.1.1). The proof proceeds by first establishing the properties of
determinants stated in Theorem 3.1.2 but for rows only (see Lemma 3.6.2). This being done, the full proof
of Theorem 3.1.1 is not difficult. The proof of Lemma 3.6.2 requires the following preliminary result.

Lemma 3.6.1

Let A, B, and C be n×n matrices that are identical except that the pth row of A is the sum of the
pth rows of B and C. Then

det A = det B+ det C

Proof. We proceed by induction on n, the cases n = 1 and n = 2 being easily checked. Consider ai1 and
Ai1:

Case 1: If i 6= p,
ai1 = bi1 = ci1 and det Ai1 = det Bi1 = det Ci1

by induction because Ai1, Bi1, Ci1 are identical except that one row of Ai1 is the sum of the corresponding
rows of Bi1 and Ci1.

Case 2: If i = p,
ap1 = bp1 + cp1 and Ap1 = Bp1 =Cp1

Now write out the defining sum for det A, splitting off the pth term for special attention.

det A = ∑
i 6=p

ai1(−1)i+1 det Ai1 +ap1(−1)p+1 det Ap1

= ∑
i 6=p

ai1(−1)i+1 [det Bi1 + det Bi1]+(bp1 + cp1)(−1)p+1 det Ap1

where det Ai1 = det Bi1 + det Ci1 by induction. But the terms here involving Bi1 and bp1 add up to det B

because ai1 = bi1 if i 6= p and Ap1 = Bp1. Similarly, the terms involving Ci1 and cp1 add up to det C. Hence
det A = det B+ det C, as required.

16Summation notation is a convenient shorthand way to write sums of similar expressions. For example a1 + a2 + a3 + a4 =

∑4
i=1 ai, a5b5 + a6b6 + a7b7 + a8b8 = ∑8

k=5 akbk, and 12 + 22 + 32 + 42 + 52 = ∑5
j=1 j2.

17Note that we used the expansion along row 1 at the beginning of Section 3.1. The column 1 expansion definition is more
convenient here.



206 Determinants and Diagonalization

Lemma 3.6.2

Let A =
[
ai j

]
denote an n×n matrix.

1. If B =
[
bi j

]
is formed from A by multiplying a row of A by a number u, then det B = u det A.

2. If A contains a row of zeros, then det A = 0.

3. If B =
[
bi j

]
is formed by interchanging two rows of A, then det B =− det A.

4. If A contains two identical rows, then det A = 0.

5. If B =
[
bi j

]
is formed by adding a multiple of one row of A to a different row, then

det B = det A.

Proof. For later reference the defining sums for det A and det B are as follows:

det A =
n

∑
i=1

ai1(−1)i+1 det Ai1 (3.16)

det B =
n

∑
i=1

bi1(−1)i+1 det Bi1 (3.17)

Property 1. The proof is by induction on n, the cases n = 1 and n = 2 being easily verified. Consider
the ith term in the sum 3.17 for det B where B is the result of multiplying row p of A by u.

a. If i 6= p, then bi1 = ai1 and det Bi1 = u det Ai1 by induction because Bi1 comes from Ai1 by multi-
plying a row by u.

b. If i = p, then bp1 = uap1 and Bp1 = Ap1.

In either case, each term in Equation 3.17 is u times the corresponding term in Equation 3.16, so it is clear
that det B = u det A.

Property 2. This is clear by property 1 because the row of zeros has a common factor u = 0.

Property 3. Observe first that it suffices to prove property 3 for interchanges of adjacent rows. (Rows
p and q (q > p) can be interchanged by carrying out 2(q− p)− 1 adjacent changes, which results in an
odd number of sign changes in the determinant.) So suppose that rows p and p+1 of A are interchanged
to obtain B. Again consider the ith term in Equation 3.17.

a. If i 6= p and i 6= p+1, then bi1 = ai1 and det Bi1 =− det Ai1 by induction because Bi1 results from
interchanging adjacent rows in Ai1. Hence the ith term in Equation 3.17 is the negative of the ith
term in Equation 3.16. Hence det B =− det A in this case.

b. If i = p or i = p+1, then bp1 = ap+1, 1 and Bp1 = Ap+1, 1, whereas bp+1, 1 = ap1 and Bp+1, 1 = Ap1.
Hence terms p and p+1 in Equation 3.17 are

bp1(−1)p+1 det Bp1 =−ap+1, 1(−1)(p+1)+1 det (Ap+1, 1)

bp+1, 1(−1)(p+1)+1 det Bp+1, 1 =−ap1(−1)p+1 det (Ap1)
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This means that terms p and p+ 1 in Equation 3.17 are the same as these terms in Equation 3.16,
except that the order is reversed and the signs are changed. Thus the sum 3.17 is the negative of the sum
3.16; that is, det B =− det A.

Property 4. If rows p and q in A are identical, let B be obtained from A by interchanging these rows.
Then B = A so det A = det B. But det B = − det A by property 3 so det A = − det A. This implies that
det A = 0.

Property 5. Suppose B results from adding u times row q of A to row p. Then Lemma 3.6.1 applies to
B to show that det B = det A+ det C, where C is obtained from A by replacing row p by u times row q. It
now follows from properties 1 and 4 that det C = 0 so det B = det A, as asserted.

These facts are enough to enable us to prove Theorem 3.1.1. For convenience, it is restated here in the
notation of the foregoing lemmas. The only difference between the notations is that the (i, j)-cofactor of
an n×n matrix A was denoted earlier by

ci j(A) = (−1)i+ j det Ai j

Theorem 3.6.1

If A =
[
ai j

]
is an n×n matrix, then

1. det A = ∑n
i=1 ai j(−1)i+ j det Ai j (cofactor expansion along column j).

2. det A = ∑n
j=1 ai j(−1)i+ j det Ai j (cofactor expansion along row i).

Here Ai j denotes the matrix obtained from A by deleting row i and column j.

Proof. Lemma 3.6.2 establishes the truth of Theorem 3.1.2 for rows. With this information, the arguments
in Section 3.2 proceed exactly as written to establish that det A = det AT holds for any n× n matrix A.
Now suppose B is obtained from A by interchanging two columns. Then BT is obtained from AT by
interchanging two rows so, by property 3 of Lemma 3.6.2,

det B = det BT =− det AT =− det A

Hence property 3 of Lemma 3.6.2 holds for columns too.

This enables us to prove the cofactor expansion for columns. Given an n× n matrix A =
[
ai j

]
, let

B =
[
bi j

]
be obtained by moving column j to the left side, using j−1 interchanges of adjacent columns.

Then det B = (−1) j−1 det A and, because Bi1 = Ai j and bi1 = ai j for all i, we obtain

det A = (−1) j−1 det B = (−1) j−1
n

∑
i=1

bi1(−1)i+1 det Bi1

=
n

∑
i=1

ai j(−1)i+ j det Ai j

This is the cofactor expansion of det A along column j.
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Finally, to prove the row expansion, write B = AT . Then Bi j = (AT
i j) and bi j = a ji for all i and j.

Expanding det B along column j gives

det A = det AT = det B =
n

∑
i=1

bi j(−1)i+ j det Bi j

=
n

∑
i=1

a ji(−1) j+i det
[
(AT

ji)
]
=

n

∑
i=1

a ji(−1) j+i det A ji

This is the required expansion of det A along row j.

Exercises for 3.6

Exercise 3.6.1 Prove Lemma 3.6.1 for columns.

Exercise 3.6.2 Verify that interchanging rows p and q

(q > p) can be accomplished using 2(q− p)−1 adjacent
interchanges.

Exercise 3.6.3 If u is a number and A is an n×n matrix,
prove that det (uA) = un det A by induction on n, using
only the definition of det A.

Supplementary Exercises for Chapter 3

Exercise 3.1 Show that

det




a+ px b+ qx c+ rx

p+ ux q+ vx r+wx

u+ ax v+ bx w+ cx


=(1+x3) det




a b c

p q r

u v w




Exercise 3.2

a. Show that (Ai j)
T = (AT ) ji for all i, j, and all

square matrices A.

b. Use (a) to prove that det AT = det A. [Hint: In-
duction on n where A is n×n.]

Exercise 3.3 Show that det

[
0 In

Im 0

]
= (−1)nm for all

n≥ 1 and m≥ 1.

Exercise 3.4 Show that

det




1 a a3

1 b b3

1 c c3


= (b−a)(c−a)(c−b)(a+b+ c)

Exercise 3.5 Let A =

[
R1

R2

]
be a 2 × 2 matrix with

rows R1 and R2. If det A = 5, find det B where

B =

[
3R1 +2R3

2R1 +5R2

]

Exercise 3.6 Let A =

[
3 −4
2 −3

]
and let vk = Akv0 for

each k ≥ 0.

a. Show that A has no dominant eigenvalue.

b. Find vk if v0 equals:

i.

[
1
1

]

ii.

[
2
1

]

iii.

[
x

y

]
6=
[

1
1

]
or

[
2
1

]


